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Short-Term Spatio–Temporal Clustering Applied
to Multiple Moving Speakers
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Abstract—Distant microphones permit to process spontaneous
multiparty speech with very little constraints on speakers, as
opposed to close-talking microphones. Minimizing the constraints
on speakers permits a large diversity of applications, including
meeting summarization and browsing, surveillance, hearing aids,
and more natural human–machine interaction. Such applications
of distant microphones require to determine where and when the
speakers are talking. This is inherently a multisource problem,
because of background noise sources, as well as the natural
tendency of multiple speakers to talk over each other. Moreover,
spontaneous speech utterances are highly discontinuous, which
makes it difficult to track the multiple speakers with classical
filtering approaches, such as Kalman filtering of particle filters.
As an alternative, this paper proposes a probabilistic framework
to determine the trajectories of multiple moving speakers in the
short-term only, i.e., only while they speak. Instantaneous loca-
tion estimates that are close in space and time are grouped into
“short-term clusters” in a principled manner. Each short-term
cluster determines the precise start and end times of an utterance
and a short-term spatial trajectory. Contrastive experiments
clearly show the benefit of using short-term clustering, on real
indoor recordings with seated speakers in meetings, as well as
multiple moving speakers.

Index Terms—Localization, multiple acoustic sources,
short-term clustering, speech segmentation, tracking.

I. INTRODUCTION

THIS paper investigates the analysis of spontaneous multi-
party speech in a noninvasive manner. The goal is to esti-

mate where and when the various speakers are talking. “Non-
invasive” means distant microphones, for example a uniform
cirular array or UCA (Fig. 1). Comparison between the signals
received at the various microphones of the array permits to eval-
uate the instantaneous locations of multiple acoustic sources
[1]–[3]. For example, with a UCA, the instantaneous location
of a given acoustic source, at a given instant , is estimated
in terms of azimuth angle , i.e., the source direction in the
horizontal plane (round face in Fig. 1 and dots in Fig. 2). Non-
invasive methods can be opposed to very efficient but invasive
methods that use close-talking microphones such as lapels [4],
where one microphone is worn by each speaker, usually near
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Fig. 1. Eight-microphone UCA used in the experiments (10-cm radius). � de-
notes the azimuth angle of the speaker.

Fig. 2. Goal (a) and the proposed approach (b). Dots depict instantaneous lo-
cation estimates � , t . Dashed lines depict trajectories of the sources [true in
(a), estimated in (b)]. Square brackets depict beginning and end of each speech
utterance. Thin, continuous lines depict short-term clusters ! � � �! .

the throat. Lapels permit to know precisely when each speaker
is talking, because their signals are much cleaner than those re-
ceived by distant microphones, due to the difference of distance
[see the difference in signal-to-noise ratio (SNR) in Table I].
However, the range of applications permitted by lapels is lim-
ited, because 1) they require each user to wear a lapel, and 2)
they practically provide no information about the location of
each speaker.

On the contrary, distant microphones are noninvasive, thus
putting much less constraints onto the users, and permit to
estimate speakers’ locations. These two properties allow for
a wider range of applications to spontaneous speech pro-
cessing, including surveillance [5], intelligent homes, offices
and meeting rooms [6], hearing aids [7], hands-free speech
processing in cars [8], as well as autonomous robots [9]. For
example, a user browsing a meeting may be interested to jump
directly at the presentation of a person, i.e., when that person
stood up and moved to the screen. This would require to de-
termine where and when each speaker is talking. The purpose
of this paper is to build and evaluate an integrated system for
the detection and localization of multiple speakers with distant
microphones. The integrated system is designed to handle both
static scenarii such as seated speakers in a meeting [10], and
dynamical scenarii such as multiple moving speakers [11]. A
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TABLE I
AVERAGE SNR ACROSS MEETINGS AND SPEAKERS OF THE M4 CORPUS

[10], IN dB DOMAIN. THE LAPELS ARE WORN BY EACH SPEAKER,
BELOW THE THROAT. MEANWHILE, EACH SPEAKER IS BETWEEN

1 AND 3 m FROM THE MICROPHONE ARRAY

generic probabilistic framework is proposed, and successfully
tested on both types of scenarii.

More precisely, the task at hand is to use the instantaneous
location estimates given by the microphone array, for two tasks:
“short-term tracking” and “speech segmentation.” “Short-term
tracking” means using the instantaneous location estimates

[dots in Fig. 2(a)] to reconstruct the spatial trajectories
of the various speakers over time [dashed lines in Fig. 2(a)]
while eliminating the incorrect location estimates [marked in
Fig 2(a)]. “Speech segmentation” means detecting along time
the beginning and end of each speech utterance [square brackets
in Fig. 2(a)]. Both tasks are difficult, not only because of the
lower SNR of distant microphones, but also because the number
of active sources varies very often over time. In other words,
spontaneous speech utterances are “sporadic” and “concurrent”
events. “Sporadic” events are short, and interspersed with many
silences. Instantaneous location estimates (dots in Fig. 2) are
thus often unavailable, during silences and parts of speech with
low energy. “Concurrent” events are simultaneous: indeed,
people often talk over each other [12], and very often some
background acoustic sources need to be eliminated (projector,
laptops).

Tracking sporadic and concurrent events may be particulary
difficult with classical filtering approaches, such as Kalman
filtering [13], [14] and its extensions [15]–[17], and particle
filtering [18], [19]. Although both have been successfully used
to locate and track a single acoustic source [20]–[25], the
fast-changing speaker turns encountered in spontaneous multi-
party speech require either allowing a single-source model to
switch between speakers [26], or specific multisource models
[27]–[29]. Although particle filters can model multiple sources
via multimodal distributions, deciding which modes are signif-
icant and which sources they belong to is an open and difficult
issue [30]. Overall, while filtering approaches are interesting for
modalities where events are somewhat continuously observable
over relatively long durations of time (radar, video), complex
birth/death rules are needed when the number of active sources
varies very often along time, and difficult data association
issues appear. Adding visual information, as in audiovisual
speaker tracking [31]–[34], permits to circumvent these issues
because each speaker can be continuously tracked using visual
information, even while silent. However, the present paper
considers the case where only audio information is available.
With audio only, alternative approaches are thus needed to deal
with sporadic and concurrent events.

This paper proposes to address “short-term spatio–temporal
clustering,” an intermediary task between instantaneous local-
ization and continuous speaker tracking. The main contribution

is a threshold-free, probabilistic framework for short-term clus-
tering.1 Instantaneous location estimates that are close
to each other in both space and time are grouped into “short-
term clusters” , as depicted by the thin continuous lines in
Fig. 2(b). Each short-term cluster implicitly defines a part
of the spatial trajectory of one speaker, as well as the begin-
ning and the end of a speech utterance, as depicted by Fig. 2(b).
Short-term clustering thus addresses both “short-term tracking”
and “speech segmentation” tasks. This versatility could not be
achieved with a purely static analysis of instantaneous location
estimates for speech segmentation, as for example K-means, or
the static criterion used in [36]. The aims and contributions of
the present paper are thus threefold.

1) To investigate noninvasive methods for speech analysis.
2) To introduce a generic theoretical framework for short-

term clustering, along with a confidence measure to detect
trajectory crossings. The latter could be useful to select re-
liable location estimates, as a prior step to a trajectory re-
construction approach such as [37].

3) To determine its usefulness in contrastive experiments
on real recordings, with multiple moving or static
speakers. Indeed, the determination of an optimal partition

ground-truth would be difficult to elab-
orate, precluding the direct evaluation of the short-term
clustering approach. On the other hand, it is conceptually
simple to define a ground-truth in terms of speaker location
and speech segmentation (respectively, azimuth locations
and time segments).

In a previous work [38], [39], excellent speech segmentation
performance was obtained, but speaker locations were assumed
static, and known in advance. The present paper removes both
assumptions through short-term clustering [Fig. 2(b)]. It is im-
portant to bear in mind that there will be many more short-term
clusters than speakers: one short-term cluster per speech
utterance. Long-term speaker clustering [40]–[42], where the
target is only one cluster per speaker, is out of the scope of the
present article. For speaker clustering results with distant mi-
crophones only, based on short-term clustering, the reader is re-
ferred to [43].

The rest of this paper is organized as follows. Section II
introduces “maximum-likelihood” short-term clustering in a
fully generic manner, considering a variable number of sources
and a variable number of simultaneous location estimates
(zero, one, or more). The proposed framework is probabilistic,
threshold-free, does not require any random sampling. It
can handle an unknown, time-varying number of observable
sources, without any explicit birth/death rule. Section III
describes online and offline implementations. Section IV illus-
trates the flexibility of short-term clustering, by using it to detect
trajectory crossings in a threshold-free manner. Section V pro-
poses an integrated multispeaker detection-localization system,
based on short-term clustering. The integrated system is suc-
cessfully tested for detection-localization of multiple moving
speakers in highly dynamical recordings [11]. In addition, on
the continuous tracking task, short-term clustering followed
by Kalman filtering compares favorably to an existing particle

1Initial results were presented in the workshop paper [35].
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filtering approach [28], [29]. Moreover, speech segmentation
experiments in Section VII prove its ability to handle more
static contexts such as meetings [10]. In both static and dynam-
ical cases, it is shown beneficial to take a speech/nonspeech
decision in terms of short-term clusters, as compared, e.g., to a
frame-level approach. Finally, Section VIII concludes the paper.
An implementation of multispeaker detection-localization with
microphone arrays, including short-term clustering, is freely
available at: http://mmm.idiap.ch/Lathoud/2006-multidetloc.

II. SHORT-TERM SPATIO–TEMPORAL CLUSTERING

This section presents the proposed short-term spatio–tem-
poral clustering approach. The context is multiple moving
sources: for each source and for each time frame, an instan-
taneous location estimate may or may not be
available, where denotes the spatial location of the source,
and denotes time. At each instant , there can be zero, one, or
multiple location estimates , such that . The
proposed approach relies on a threshold-free criterion to cluster
these location estimates into short-term trajectories.

Although the approach is fully generic, throughout this
paper the practical context will be one microphone array on a
table (Fig. 1), recording multiparty speech in a meeting room
(Fig. 10). The array is used to provide instantaneous audio
source location information (see [1], [3], [44], and [45] for
comprehensive reviews on this topic). The spatial location is
for example an azimuth value in degrees. Our ultimate goal is
to cluster the correct location estimates into speech utterances,
and to discard the incorrect location estimates.

A. Assumption on Local Dynamics

Let for be all instantaneous lo-
cation estimates of events emitted by the various sources. This
includes the desired events (speech sounds) as well as noise.

is a location in space, while is a time
frame index: . The notation designates

the set of all location estimates: .
For convenience, without loss of generality, we assume the lo-
cation estimates ordered in time:

(1)

Note that there can be multiple location estimates per time
frame, i.e., .

The notation designates a probability density function (pdf)
or likelihood. The notation designates a probability or a pos-
terior probability. For any pair of location estimates ,
we define the two hypotheses.

• “ and correspond to sources.”

• “ and correspond to the source.”
The two hypotheses are complementary: .
As a preliminary experiment, we ran instantaneous audio source
localization with a Uniform Circular Array (UCA) of micro-
phones [1] on real data [11], using the Steered Response Power
with PHAse Transform (SRP-PHAT) approach [46]. For each
location estimate , is an estimate of the direction
of an active acoustic source (azimuth in the horizontal plane).

Fig. 3. Histogram of azimuth angle variations � � � over a two-frame delay
(jt � t j = 2), on real data (recording seq01 from [11]). The super-imposed
curves depict the bi-Gaussian mixture model obtained through EM training.

We observed the values of the difference for short de-
lays up to , where is a small number of
time frames (e.g., 7). Fig. 3 displays a typical histogram of lo-
cation variations (in gray). Our interpretation is as fol-
lows: two location estimates and either correspond to the
same source or not. In the first case , the difference
is small: a source does not move a lot during a short time pe-
riod. Hence the zero-mean central peak in the histogram. In the
second case , the difference is random: the trajec-
tories of two sources are independent, at least in the short-term.
We therefore propose the following model for local dynamics,
i.e., for :

(2)

where , and denotes the Gaussian pdf
with mean and standard deviation . Although an intuitive
choice in the case of would be a uniform distribution, we
opted for a Gaussian to capture the dependency of on the
delay . This dependency was observed on real data; examples
can be found in [35].

The standard deviation accounts for short-term varia-
tions of location estimates due to both local motion and mea-
surement imprecision. We argue that there is no need to distin-
guish the two, as long as the analysis is restricted to short de-
lays . For each delay , , and can be
estimated simply, through EM training [47] of a bi-Gaussian
mixture model, either on the entire data such that

, or in a blockwise fashion when the data is pro-
cessed online, as in Section III-A. The mean of each Gaussian is
fixed to zero. Although the weights are also trained during EM,
they are not used in the rest of the process. Fig. 3 shows an ex-
ample of bi-Gaussian mixture model.

The proposed model allows location differences to be
close to zero, while and belong to two different sources:

. Such a situation may happen in reality, whenever two
sources’ trajectories cross each other; see Section IV for further
discussion on this topic.
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Fig. 4. Two types of clusters. This paper focuses on (a) short-term clusters,
obtained with location cues only. (b) Long-term clustering requires additional
cues, and is out of the scope of this paper. However, short-term clustering (STC)
was shown to be useful for long-term clustering [43].

The present paper reports tests in 1-D space (azimuth). For
higher dimensions, e.g., in spherical or Euclidean coordinates,
one could simply replace and with covariance ma-
trices (diagonal should be sufficient). The rest of the approach
presented below is unaffected by such a modification, because
it relies on probabilities only (2).

B. Short-Term Clustering (STC)

This paper is focussed on short-term clustering (STC), using
location cues alone. Given a value of , a cluster
is “short-term” if it has “time gaps” of at most [Fig. 4(a)].
All other clusters are called “long-term clusters” [Fig. 4(b)].

Formally, a cluster is “short-term” iff

(3)

A partition of the data is
then “short-term” iff all clusters are “short-term.” We’ll
denote this property with

(4)

where is the set of all possible short-term partitions of
the data , for a given value of .

C. Threshold-Free Maximum Likelihood Clustering

Given the local dynamics (2), we propose to detect and track
events as follows: find a short-term partition of that
maximizes the likelihood of the observed data:

(5)

Note that the number of clusters has to be estimated as well.
Each cluster contains locations for one event, e.g., a
speech utterance. We are not trying to produce a single trajectory
per source, but rather an oversplitted solution where is
the number of individual events, for example speech utterances.
The exact value of is thus not important: we rather want to
be sure that all location estimates within each cluster cor-
respond to the same source. However, defining one cluster per
location estimate obviously fulfills this constraint, although it
is of little practical interest. Therefore, within each cluster, we
would also like to have as many location estimates as possible,
that belong to the same source. In other words, a criterion should

Fig. 5. This two-cluster partition
 = f! ; ! g implicitly defines six local de-
cisions H (i; j) (dotted lines) and four local decisions H (i; j) (dashed lines).
In this particular case, all location estimates (dots) are within a T time
window.

be derived from the data-driven dynamical constraints (2), that
also minimizes as much as possible.

Over time, a source may move while being unobservable
(e.g., silent, moving speaker). Using location cues alone, it is
impossible to determine whether location estimates before and
after the “silence” period belong to the same source. In other
words, we can relate location cues in the short-term only. We
therefore propose to maximize the following “short-term crite-
rion,” using a simplifying independence assumption between
all pairwise differences :

(6)

where is either or , depending on
whether or not and belong to the same cluster in the
candidate partition , as depicted by Fig. 5. Each term of the
product is expressed using (2). One important characteristic of
this approach is that it does not need to explicitly model the true
number of sources whose events are observed. Therefore, com-
plex dynamical constraints and associated birth/death rules are
not needed.

The proposed task, to cluster observations, fundamentally dif-
fers from particle or Kalman filtering, which estimate a hidden
state variable from the observations. In addition, filtering usu-
ally relies on a conditional independence assumption between
consecutive observations, given the state values [48]. On the
contrary, the proposed STC precisely consists in modeling de-
pendencies between several consecutive observations, up to the
order .

III. OPTIMIZATION ALGORITHMS

The goal is to find a short-term partition of the observed
location estimates that maximizes the criterion (6).
Even short recordings contain thousands of location estimates:

. It is thus untractable to try all possible short-term
partitions . Sections III-A and III-B propose tractable,
suboptimal implementations (online and offline).

A. Online: Sliding Window (SW)

We propose to find a suboptimal solution by using a
sliding analysis window, shifted at each iteration by lo-
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TABLE II
ONLINE SLIDING WINDOW (SW) MAXIMUM LIKELIHOOD ALGORITHM. THE LIKELIHOOD OF A PARTITION IS ESTIMATED

WITH (6). LOCATION ESTIMATES ARE ORDERED BY INCREASING TIMES (t � t )

cation estimates, where location estimates are ordered by
increasing times

(7)

Table II describes the algorithm. Step 1 is the initialization: for
each delay , a bi-Gaussian model is fitted on azimuth differ-
ences such that , as in Section II-A. Steps
2, 3, and the optional Step 4 constitute one iteration of the al-
gorithm. Step 2 selects the maximum-likelihood (ML) partition
of the location estimates in the set , independently of
all other data. The set has a fixed size , given by the
user. Step 3 merges some clusters of the partition of selected
at Step 2, with some clusters in the past set , again maximizing
the likelihood. contains all location estimates within
frames in the past. There can be a variable number of location
estimates for each time frame, therefore the set has a variable
size. The optional Step 4 updates the bi-Gaussian models with
recently seen data. The result of this algorithm is an estimate

of the ML short-term partition of all
observed data . The entire process is online, threshold-free,
and can be deterministic.2 As discussed in Section II-C, this
process fundamentally differs from particle or Kalman filtering.
In particular, the proposed approach models observation depen-
dencies (2) up to the order , even in the case .

One interest of this approach is bounded computational load.
For both Step 2 and Step 3, evaluating a candidate partition (Step
2) or a candidate merge (Step 3) following (6) is easily imple-
mented through a sum in the log domain over location estimates
within (Step 2) or (Step 3). The question is: how many
partitions must be evaluated?

The total number of partitions evaluated at Step 2 is shown
in Table III. For , there are at most 877 such par-
titions. As for Step 3, the worst case computational complexity
was investigated in [35], in the special case where there is only
one location estimate per time frame: for , there are
at most 13 327 possible merges. However, in the general case
investigated here, there can be multiple location estimates per
time frame, thus many more possible merges. In practice, this

2A deterministic initialization of the EM training of the bi-Gaussian model
can be used, similarly to [49].

TABLE III
SW ALGORITHM: NUMBER OF POSSIBLE PARTITIONS, FOR EACH POSSIBLE

NUMBER OF ELEMENTS (STEP 2 IN TABLE II)

situation is rarely encountered, as it corresponds to a case where
most location estimates in are unrelated to each other. Two
practical solutions can be used, favoring oversplitting. First, one
could set a hard limit on the number of partitions that are con-
structed at Step 3 (e.g., 10 000), always including at least the
case without any merge. Second, a heuristic can be used to prune
out most of the “unlikely” merges, by forbidding short-term par-
titions of the analysis window, that include “new” decisions

whenever

(8)

where is a small value, e.g., . On tests with synthetic
data (Section IV-B), we obtained exactly the same results with
pruning or without pruning.

B. Offline: Simulated Annealing (SA) Optimization

Alternatively, the proposed modeling can be cast into a
Markov random field framework [51], by defining a label field

. is a random variable denoting the
label associated with observation . The actual label values
are unimportant, they can be, for example, integers. We define
a graph , where represents the set of nodes, and
denotes the neighborhood system. is a neighbor of iff

. A graph uniquely defines a short-term
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TABLE IV
SA ALGORITHM: THE MRF OPTIMIZATION (IN PRACTICE � = 0:97)

TABLE V
SA ALGORITHM: THE SIMULATED ANNEALING SA(E; �) STEPS

partition . Given the observations , the goal is
to estimate the label field that maximizes the ML criterion
(6), or strictly equivalently, that maximizes the following Potts
field [52]:

(9)

with

(10)

where is the set of pairwise cliques of the neighborhood
system , is the partition function (normalization factor),
and is the Kronecker function, the value of which is 1 when

, and 0 otherwise. The are the Potts coefficients, the
values of which depend on the observations and can be derived
from (2) and (6)

(11)

The maximization of the probability with respect
to the label field is equivalent to the minimization of the en-
ergy function and can be conducted using standard tech-
niques. We adopted a simulated annealing approach [52], [53],
with Gibbs sampling and an exponentially decaying tempera-
ture, followed by an iterated conditional mode (ICM) [52], [53]

procedure, as described in Tables IV and V.3 We considered
three alternatives, with different initializations .

• SA(1): The initial label field has a single label shared
by all nodes.

• SA(N): The initial label field has one different label
per node.

• SA(SW-1): The initial label field is constructed in a
sequential and causal fashion: for each new observation,
we select the label that minimizes given all pre-
vious observations. This initialization is strictly equivalent
to SW-1: the SW algorithm with .

The outcome of these alternatives and on their impact on the cri-
terion, the number of short-term clusters, and the performance,
are discussed in Section VII-E.

IV. APPLICATION: THRESHOLD-FREE DETECTION

OF TRAJECTORY CROSSINGS

This section defines a confidence measure for each possible
individual decision ( or 1), and explains how it
allows to detect and deal with low confidence situations such as
trajectory crossings. The goal is to illustrate the flexibility of the
proposed probabilistic framework (6). It is relevant to contexts
where the events emitted by the various sources are somewhat
“continuous” (e.g., acoustic signals from vehicles [54]). The
task investigated here is to extract pieces of trajectories that each
belong for sure to a single source. Achieving this task would be
useful as a first step, prior to Bayesian network tracking [37],
for example.

We propose to use the posterior probability
as a confidence measure for a given

local decision . Assuming equal priors for all possible
short-term partitions of the observed data , the
posterior probability of the local decision can be expressed as
follows, for or 1:

(12)

where .
Section IV-A proposes to use this confidence measure to
modify the ML optimization procedure.

A. Threshold-Free Confident Clustering

We would like to determine when trajectories cross and to
split short-term clusters accordingly. Fig. 6(a) gives an example
of ML partition. and are very close, it is thus not clear
which short-term cluster and should ideally belong to. In
such a case, there may exist a different partition with a close-to-
optimal likelihood [Fig. 6(b)]. We propose here to break each
short-term cluster that contains or into two “confident”
parts, and to create two separate one-element clusters and

[Fig. 6(c)].
Let us assume that the ML criterion (6) leads to the decision

. “Confidence” in the latter, is low on
Fig. 6(a), and implicitly, confidence is low as well for and

3Note that any short-term partition configuration (
 2 � ) can be reached
with a nonzero probability, which is a requirement of simulated annealing.
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Fig. 6. Example of low confidence decision H (i; j) at a trajectory crossing. Each dot is a location estimate. A continuous line depicts each short-term cluster ! .

decisions that involve or . We propose to detect “low con-
fidence” in a ML decision , by comparing it to all ML
decisions in the same analysis window . Formally, a
“low confidence” decision is defined as verifying

(13)

where

(14)

For the SW algorithm, “confident clustering” is implemented
by modifying Steps 2 and 3 in Table II as follows.

• For all in the analysis window (Step 2)
or (Step 3), estimate using
(12). For , we use the set of all candidate partitions in

.
• Step 2: whenever a decision given by the ML al-

gorithm has “low confidence” (13), split in two parts the
short-term cluster containing , at time . Idem for .
Additional one-element clusters and are cre-
ated [Fig. 6(c)].

• Step 3: whenever a decision given by the ML al-
gorithm has “low confidence” (13), forbid any merge be-
tween each of the two short-term clusters containing
(resp. ), and any other short-term cluster.

Confident clustering requires . Otherwise, with
, cancellation of a single ML merge (Step 3) will

most often be replicated in the future, thus resulting in an
unnecessarily long series of one-element clusters. We verified
this phenomenon on the same synthetic data as the one used in
Section IV-B.

In the case of SA, since only some of the partitions are ex-
plored, a different implementation may be needed to detect tra-
jectory crossings.

B. Multisource Tracking Examples

We generated data that simulates “sporadic” and “concurrent”
events by restricting to have at most only one location
estimate per time frame , yet with trajectories that
look continuous enough so that it is still a tracking problem. In
all test sequences, the number of active sources varies over time,
and trajectories cross several times. The task is twofold.

• Task 1: From instantaneous location estimates , build
the various trajectories accurately.

• Task 2: Extract pieces of trajectory (clusters), where each
piece surely belongs to a single source. This implies that no
short-term cluster extends beyond any trajectory crossing.

Fig. 7 compares the result of ML clustering (SW implemen-
tation, with and ) with the result of
the confident clustering described in Section IV-A. Although the
ML clustering correctly builds the various trajectories (task 1),
it produces arbitrary decisions around the points of crossing. On
the contrary, confident clustering correctly splits the trajectories
at all crossing points (Task 2).

Thus, confident clustering could be particularly useful to
create reliable pieces of trajectories, which do not include any
crossing point. These pieces of trajectories can then be linked
using approaches such as Bayesian networks [37].

V. APPLICATION TO DETECTION-LOCALIZATION

OF MULTIPLE SPEAKERS

This section presents an integrated system for detection and
instantaneous localization of multiple speakers, along with ex-
perimental results on recordings with multiple moving speakers.
We show that the use of STC (Sections II and III) for speech/
nonspeech (SNS) classification permits to achieve substantial
improvements over frame-level approaches. The resulting inte-
grated system is used as a platform for multispeaker tracking in
Section VI, and for multispeaker segmentation in Section VII.

Since the focus of this paper is STC, the multisource de-
tection-localization system is summarized as much as possible
(Section V-A). A detailed description of this implementation is
available in [43].

A. Instantaneous Multisource Detection-Localization

Zero, one, or more location estimates are pro-
duced at each time frame, where is the azimuth of an audio
source with respect to a microphone array (Fig. 1), and the
frame time. “Instantaneous” means that each time frame is pro-
cessed individually. A two-step approach is used, as illustrated
by Fig. 8. First, a sector-based predetection step [49] limits the
search space to zero, one or more sectors of space around the mi-
crophone array. Second, the SRP-PHAT [46] local maximum is
found within each active sector, through scaled conjugate gra-
dient descent [55]. Both steps rely on a Generalized Cross-Cor-
relation with PHAse Transform (GCC-PHAT) [56] representa-
tion of the data to estimate the following.

• The bandwidth occupied by the sources in a given sector
of space [8], which is then modeled in an unsupervised
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Fig. 7. Comparison ML clustering/confident clustering on multiple source cases, where the number of active sources varies over time. Gray dots: location esti-
mates X (62.5 Hz). Black lines: clusters ! . We can see that the ML clustering algorithm takes arbitrary decisions at trajectory crossings. On the contrary, the
confident clustering correctly splits the short-term clusters at each trajectory crossing. A Matlab implementation of short-term clustering (ML and confident, SW
implementation) can be found on the following website, along with ten synthetic data examples: http://mmm.idiap.ch/Lathoud/2006-short-term-clustering/.

Fig. 8. Two-step implementation for multisource detection-localization [43].
The eight dots indicate the locations of the microphones. (a) sector-based de-
tection-localization. (b) gradient descent within each active sector.

manner, using a probabilistic framework [49]. A final bi-
nary decision [Fig. 8(a)] is taken using automatic thresh-
olding [49].

• The SRP-PHAT metric [46] at a given point of space, for
gradient descent [43] [Fig. 8(b)].

The reader is referred to [43] for full details, freely available
code, and tests on real data that show that this system achieves
detection-localization of up to three multiple simultaneous
speakers, with near real-time performance (implementation
called “FAST” in [43]). We used a 32-ms frame length with
50% overlap (16-ms frame shift).

B. Speech/Nonspeech (SNS) Classification

Let us assume that we have a system for instantaneous de-
tection and localization of multiple audio sources, as described
above. “Audio sources” include not only human speakers, but
also noise sources such as a projector, a laptop and the various
reverberations, as shown in Fig. 11(a). However, our final task is
multi-speaker detection-localization, so it is needed to remove
the nonspeech location estimates [see the result in Fig. 11(b)]. In
other words, each location estimate must be classified as speech
or nonspeech. In this paper, two systems are investigated: the
SNS decision is taken either at the location estimate level ,
i.e., not using context—or at the short-term cluster level ,
i.e., using context.

“Individual SNS”: SNS Decision for Each Individual Loca-
tion Estimate Separately: As detailed in [43], we compare
to a threshold the posterior probability of having a wideband,
non-noisy signal emitted by the source at location and time

. The threshold is determined without tuning, as in [49], to
match a user-defined target of detection false alarm rate (FAR),
for example FAR .

“Cluster SNS”: SNS Decision per Short-Term Cluster :
When a short-term cluster contains more than one location esti-
mate, it is possible to estimate the non-stationarity of the whole
short-term cluster, based on a location-dependent way of ex-
tracting MFCC, detailed in [43]. A “speech cluster” is then
defined as having the following.
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Fig. 9. Detection-localization of multiple speakers, using microphone arrays
(systems SW-1, SW-7, and SA).

1) At least two location estimates corresponding to a wide-
band, non-noisy source ( , , ). (Individual SNS
decisions.)

2) Non-stationarity above a threshold. In practice, this
threshold is fixed and does not require tuning, due to an
underlying spectrum normalization [43].

Two advantages can be expected from cluster SNS over in-
dividual SNS. First, some correct location estimates that would
not pass the “individual” test, called “weak but correct” esti-
mates hereinafter, may still be part of a speech cluster, and thus
be correctly detected. Thus, more speech should be retrieved, as
verified in Section V-D. Second, the non-stationarity measure
allows to exclude machine noise sources such as a projector or
a laptop. This is useful in the meeting environment, as reported
in Section VII-D.

C. Experimental Protocol

To assess whether STC is beneficial to the detection decision,
we compared the two SNS classification systems (individual
versus cluster) using the same underlying instantaneous mul-
tisource detection-localization system (Section V-A, top block
in Fig. 9). We ran the two systems on eight real indoor record-
ings from the freely available AV16.3 corpus [11]. Multiple
simultaneous speakers are moving around a table, with an
eight-microphone, 10-cm radius, UCA on its top (Figs. 1
and 10). Three cameras were used to reconstruct the 3-D
ground-truth location of each speaker, with an error inferior to
1.2 cm [11]. In the clustering case, we used the SW algorithm
with .

The focus here is correct detection-localization of multiple
moving speakers. For both systems, speech location estimates
are compared with the closest ground-truth speaker location. We
derive the following performance metrics [43] on intervals on
which the ground-truth locations of all speakers are known:

• bias and standard deviation in degrees, to assess the preci-
sion of the localization.

• the percentage of detected speech that was correctly local-
ized, i.e., within a small error margin (the margin is de-
rived from the bias and the standard deviation, as detailed
in [43]).

Fig. 10. Recording seq45 from the AV16.3 Corpus [11], with three moving
speakers. The eight-microphone array is marked with an ellipse. The ball
markers were used to construct the ground-truth location of each speaker with
respect to the array.

TABLE VI
COMPARISON BETWEEN TWO TYPES OF SNS DECISION, ON THE AV16.3
CORPUS [11], INCLUDING REAL RECORDINGS WITH MULTIPLE MOVING

SPEAKERS, SIMULTANEOUSLY SPEAKING. BIAS AND STANDARD DEVIATION

(STD) ARE EXPRESSED IN DEGREES

D. Results and Discussion

From Fig. 11(a) and (b), one can see that the SNS decision
using short-term clusters permits to remove most of the incorrect
location estimates, while keeping most of the correct location
estimates. This is also visible in Fig. 11(c), which presents a
three-speaker case. Note that the gaps in the ground-truth do not
mean that a speaker is silent, but simply that the mouth location
was occluded on a camera—and thus the ground-truth location
unavailable.

Table VI presents the overall detection-localization results.
The percentage of correct location estimates is very similar for
both methods, but short-term clustering clearly retrieves much
more speech signal.4 Indeed, as discussed in Section V-B, each
short-term speech cluster contains some “weak but correct” lo-
cation estimates, which would not pass the “individual” test.
This confirms the interest of grouping location estimates before
rejecting noise. The price to pay is a slight decrease in local-
ization precision, probably due to those “weak” location esti-
mates. This loss of precision can anyway be compensated for by
smoothing the trajectory described by each short-term cluster,
e.g., using Kalman filtering [13], [57] or RTS smoothing [58],
as shown in Section VI.

Overall, the proposed cluster SNS method allows to select a
much larger amount of correct location estimates as compared
to the individual SNS method, while rejecting the same propor-
tion of incorrect ones. This could be useful as a prior step to

4To obtain the same “Total detected” duration as for the cluster method
(699.0 s), the individual method can be made less conservative. The percentage
correct then falls to 62.28%, with precision bias 0.375, std 2.869.
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Fig. 11. Effect of the cluster-level SNS classification (Section V-D). Grey dots: location estimates X , dashed lines: ground-truth (GT). The GT of a speaker is
only available when the mouth is visible on three cameras. Data: AV16.3 Corpus [11] (one speaker: seq11, three speakers: seq45).

trajectory analysis, as done in [37]. Section VII uses the cluster
SNS method for meeting segmentation.

VI. ADDITIONAL FILTERING FOR MULTISPEAKER

CONTINUOUS TRACKING

While Section V investigated the detection and the instan-
taneous localization of multiple speakers, the present section
investigates the continuous tracking of multiple speakers. We
propose to infer a filtered trajectory for each short-term speech
cluster (as defined in Section V-B). Each short-term speech
cluster is processed separately as a single source, thus avoiding
all data association issues. The proposed deterministic approach
(STC, cluster SNS, then filtering) is compared to an existing
(stochastic) particle filtering approach [28], [29], which directly
processes the location estimates .

A. Cluster SNS Followed by Filtering (Cluster+Filter)

Each short-term speech cluster is filtered separately. For
each short-term speech cluster , for each , we replace
the spatial location estimate with a filtered estimate. We pro-
pose three fully deterministic5 approaches:

Cluster+WMF: WMF stands for weighted mean filtering,
where each filtered estimate is the seven-point weighted mean
of . Each weight is a probability of speech, as estimated
in [43]. The window size (seven points) was not tuned.

Cluster+KF: KF stands for Kalman filtering [13], [57], in
2-D state space . The measurement noise matrix [57]
was set to where is the 2 by 2 identity matrix, the
process noise matrix [57] was set to , and the
error covariance matrix [57] was initialized to .
Only one parameter required tuning .

Cluster+RTS: RTS stands for Rauch–Tung–Striebel
smoothing [58], also known as Kalman smoothing. The
parameters are exactly the same as in Cluster+KF.

B. Existing Particle Filtering Approach (PF)

PF: We implemented an existing PF approach for multiple
audio sources [28], [29]. The PF explicitly addresses the data as-
sociation issue, where for each time frame, the number of audio

5STC is implemented deterministically (Section III-A). SNS is also determin-
istic [Section V-B], as well as the three filters (WMF, KF, and RTS).

sources and their locations are estimated from the multiple in-
stantaneous measurements . The PF also includes rules for
births and deaths of audio sources. We used 1000 particles for
each source. In practice, we observed the PF approach to be very
sensitive to the chosen dynamical parameters ( and in [28],
[29]) as well as to the initialization of the speed when creating
an audio source. For a fair comparison with the “Cluster+Filter”
approaches, initialization of the speed was implemented using
the next time frames. Finally, we had to post-process
the result by thresholding posterior probabilities of “existence”
[28], [29], to remove spurious trajectories. We used the same pa-
rameter values as in [28], [29], except for seven parameters that
required tuning. Tuning involved substantially more tests than
in the “Cluster+Filter” approaches.

PF+SNS: The PF approach in [28], [29] does not distinguish
between speech sources and nonspeech sources. The PF+SNS
approach rejects a nonspeech source using the exact same SNS
classification as for a cluster (Section V-B).

C. Results and Discussion

Results are reported in Table VII, using the same metrics
as described in Section V-C. All “Cluster+Filter” approaches
substantially improve the localization precision as compared
to “Cluster” alone, especially in terms of standard deviation.
PF and PF+SNS provide a slightly smaller bias ( 0.1 ) than
“Cluster+Filter,” but a much larger standard deviation ( 0.2
to 0.4 ). A possible reason is the stochastic nature of the PF
approach, where the inferred trajectory sometimes “jumps”
far away. This is not the case of the three “Cluster+Filter”
approaches, which are fully deterministic.

In the case of a “jump,” the PF eventually destroys the corre-
sponding source (death) because it does not match observations
anymore. The PF also creates new source(s) that match the ob-
servations (births), but it often requires a few frames before a
new source is considered to be “fully existing” [28, Sec. 2.4.5].
In our understanding, this hysteresis-like behavior leads to lose
much speech. This may be an explanation for the much lower
“Total detected” duration for PF and PF+SNS (first column of
Table VII), as compared to the “Cluster+Filter” approaches.
We tried to lower the existence threshold of the PF, but it led
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TABLE VII
COMPARISON BETWEEN VARIOUS FILTERING TECHNIQUES FOR TRACKING

MULTIPLE MOVING SPEAKERS, ON THE AV16.3 CORPUS [11]. WMF, KF,
RTS, PF, AND PF+SNS ARE DEFINED IN SECTION VI. L = INSTANTANEOUS

LOCATION ESTIMATES, P = PROBABILITY OF SPEECH ACTIVITY [43], N. PAR.
= TOTAL NUMBER OF PARAMETERS, (TUNED) = NUMBER OF PARAMETERS

THAT REQUIRED TUNING

to a quick increase of the proportion of noisy location esti-
mates. This phenomenon is visible by comparing the “Total de-
tected” and “Correctly localized” figures of the PF and PF+SNS
approaches.

Overall, the “Cluster+Filter” approach seems to be superior
to the PF approach on spontaneous multiparty speech in terms
of both detection and localization precision, with several pos-
sible reasons. First, “Cluster+Filter” is implemented in a fully
deterministic manner, whereas the stochastic nature of PF per-
mits erroneous “jumps.” Second, in “Cluster+Filter,” both STC
and filtering are threshold-free, thus potentially less sensitive to
tuning than PF.6 Third, STC groups location estimates that are
close to each other before rejecting noise and filtering, whereas
PF attempts to do all at the same time.7 Finally, STC does not
attempt to extract long-term trajectories from the essentially
sporadic spontaneous speech, whereas PF does, which leads to
many births and deaths. This behavior of PF differs from the
results shown in [29, Ch. 2], probably because the latter only
tested continuous read speech.

VII. MEETING SEGMENTATION APPLICATION

In this section, we report experiments conducted on real
meeting data recorded with a UCA, the M4 Corpus [10].
We use the system described in Section V, with cluster-level
SNS classification (the filtering proposed in Section VI is
not necessary for this task). A comparison with close-talking
microphones is given. These experiments can be seen as a more
static counterpart to the moving speaker experiments reported
above. We want to determine whether the same system can cope
with both static and dynamic contexts. In the previous section,
the focus was on correct detection for precise localization of
multiple moving speakers. In this section, we focus on the
speech segmentation task: we have a precise time-domain
ground-truth, but an approximate spatial ground-truth.

“Speech segmentation” means that we are only trying to sep-
arate the different speakers in the short-term (where? when?).
The target is one short-term cluster per speech utterance. Re-
sults reported in [43] show that the proposed speech segmen-
tation system forms a strong basis for long-term speaker clus-
tering (who?) with distant microphones, where the target is only

6As for the SNS, it has one threshold, but no tuning was required (Sec-
tion V-B).

7Grouping before denoising already explained the superiority of the “Cluster
SNS” method over the “Individual SNS” method in Section V-D.

one cluster per speaker. However, it is out of the scope of the
present article.

The differences between a previous work [59] and the ap-
proach presented here are as follows.

• We are focusing on the speech segmentation task only, not
on the speaker clustering task.

• We use distant microphones only (no lapel).
• We segment each meeting independently.
• The proposed approach does not rely on a hidden Markov

model (HMM).
On the contrary to the preliminary results reported in [35],

all systems presented here perform automatic removal of non-
speech sources (e.g., projector).

A. Test Data

The test corpus includes 21 short meetings from the publicly
available M4 Corpus (http://mmm.idiap.ch). The total amounts
to about 2 h of multichannel speech data. Three meetings were
used as a development set to tune post-processing parameters
(Section VII-D), and after that, 18 meetings were used as a test
set to evaluate performance metrics.

In the data, people are seated around a table, and sometimes
stand up and move to the screen for a presentation using a pro-
jector, or to the blackboard. In all meetings, an independent
observer provided a very precise speech/silence segmentation.
Because of this high precision, the ground-truth includes many
very short segments. Indeed, more than 50% of the speech seg-
ments are shorter than 1 s, as depicted in Fig. 12.

B. Proposed Systems

We tested several variants of this system, corresponding to the
different optimization algorithms introduced in Section III. The
online systems use the sliding window algorithm, with

and either (SW-1) or (SW-7).
was not tuned, it was only chosen to keep the com-

putational cost low (Table III). We also tested the offline systems
based on SA.

In all cases we use maximum-likelihood clustering
(Section II-C) for this application. The confident clustering
described in Section IV-A is not necessary in the case of speech,
since trajectory crossings are rarely seen due to the sporadicity
of speech. Confident clustering is more relevant to cases where
the signals are more continuous in time (e.g., vehicles [54]).

C. Baseline System Using Lapels

The proposed systems use distant microphones only. We
compared them to a lapel-only baseline. The latter is an en-
ergy-based technique that selects the lapel with the most energy
at each frame and applies energy thresholding to classify the
frame as speech or silence. We tried to use zero-crossing rate
(ZCR) as well, but it degrades significantly the segmentation
performance. Indeed, ZCR appeared very sensitive to some
noises found in meetings, such as writing on a sheet of paper.
Therefore, results are reported with energy only. Note that
lapels have an SNR around 18.7 dB, while distant microphones
have an SNR around 10.7 dB (Table I).
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Fig. 12. Histogram of speech segment durations in the ground-truth (M4
Corpus [10]).

TABLE VIII
SEGMENTATION RESULTS ON THE M4 CORPUS. SW-1 AND SW-7 USE

DISTANT MICROPHONES ONLY. VALUES ARE PERCENTAGES, RESULTS

ON OVERLAPS ONLY ARE INDICATED IN BRACKETS. PRC,RCL,F:
THE HIGHER THE BETTER. DER: THE LOWER, THE BETTER

D. Performance Measures

We evaluated the result of each system as follows. For the
proposed systems (SW-1, SW-7 and SA),8 for each speech lo-
cation estimate, the corresponding time frame (32-ms segment)
is attributed to the closest human speaker in space (the ground-
truth location(s) of each speaker are known). Similarly, for the
lapel baseline, for each lapel, each speech time frame is at-
tributed to the speaker wearing the lapel. For each speaker, the
resulting speech/silence segmentation is further post-processed
with basic morphological operators [60]: dilation, erosion, clo-
sure, and opening, as in [39]. For each system, post-processing
parameters are tuned to maximize the F-measure on the devel-
opment set (three meetings). Each system is then applied on the
test set (18 meetings). The performance metrics described in the
following were evaluated for each meeting separately. Averages
across all meetings are reported in Tables VIII–X. As opposed
to previous results [35], all systems must include automatic re-
moval of nonspeech sources such as the projector.

For each meeting, evaluation was performed as follows. For
each speaker, the resulting speech/silence segmentation is com-
pared to the ground truth (GT). Following [61], four types of
durations are calculated:

• : total duration of all segments in a meeting where a
speaker is speaking in both result and GT;

• : total duration of all segments in a meeting where a
speaker is silent in both result and GT;

8To have a fair comparison between online and offline implementations, in
all cases we used the same � and � values for each recording, obtained
through EM fitting on the whole recording data X .

• : total duration of all segments in a meeting where a
speaker is speaking in the result, but silent in the GT;

• : total duration of all segments in a meeting where a
speaker is silent in the result, but active in the GT.

Following [61], six metrics are defined, with values in [0,1]:
• False Alarm Rate: FAR ;

• False Rejection Rate: FRR ;

• Half Total Error Rate: HTER FAR FRR ;

• Precision: PRC ;

• Recall: RCL ;

• F-measure: PRC RCL PRC RCL .
In the optimal case, FAR, FRR, and HTER are all equal to 0,
and PRC, RCL, and F are all equal to 1. The F-measure is a
harmonic mean of PRC and RCL; therefore, a large value of
F-measure requires a large value for both PRC and RCL.

We also report results in terms of diarization error rate (DER),
a percentage metric defined by NIST [62]. As opposed to PRC/
RCL/F results, DER excludes part of the data from the eval-
uation: within a collar of 0.25 s around each speech segment
end-point, results are not evaluated. Moreover, silences of less
than 0.300 s are removed from both result and ground-truth.
The DER is then defined as the percentage of speech that was
wrongly attributed: DER MISS FA SPKR, where MISS
and FA are the percentages of missed speech and false alarms,
respectively, and SPKR is the percentage of speech attributed to
the wrong speaker. Full details can be found in [62].

In any case (PRC/RCL/F or DER), it is important to bear
in mind that in this paper we are only evaluating the speech
segmentation quality (one cluster per utterance). An evaluation
of the application of STC to speaker clustering (one cluster per
speaker) is reported in [43].

E. Results and Discussion

Choice of an Optimization Method: Fig. 13 presents a com-
parison of various instances of SA, where different initializa-
tions and different values of the initial temperature are tried.
Results are reported in terms of energy (10), final number
of clusters , and segmentation performance F. To accommo-
date the various lengths of the meetings, we have normalized all
three measures with respect to a reference method (SW-1):

• Normalized energy: for each meeting, ,
where is the number of terms in the sum in (10);

• Normalized log number of clusters: for each meeting,
;

• Normalized F: for each meeting, .
Fig. 13(a) shows that the proposed criterion is effectively related
to the final segmentation performance: the lower the energy, the
higher the performance. All lowest energies lead to very similar
performances. It could be concluded that the dynamics (2), in
conjunction with the proposed criterion (6), constrain the type
of solution that can be obtained. Fig. 13(b) shows that mini-
mizing is highly correlated with minimizing , which
was one of the objectives announced in Section II-C. Fig. 13(c)
shows that a high initial temperature leads to a result indepen-
dent from the initialization, which is similar to the well-known
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Fig. 13. Comparison between different optimization methods: SW-1, SA(1), SA(N), SA(SW-1) (Sections III and VII-E). In (a) and (b) there is one dot for each
triplet (meeting, SA( ) method, � value), that is 18� 3� 4 combinations. In (c), each bar represents mean and standard deviation across the 18 meetings. All
values are normalized with respect to SW-1 (Section VII-E).

property of simulated annealing when temperature decreases in
a logarithmic fashion [52].

The diversity of behaviors observed for a lower initial temper-
ature can be explained as follows: when the initial labeling
is rather bad [SA(1) and SA(N)], since the local optimization
is pointwise and points are visited at random (see Table V), the
procedure tends to accept too often the NewLabel tag, which
ultimately result in a slightly oversegmented solution. This ef-
fect does not appear when using the SA(SW-1) solution as the
labels are much more stable because the local posterior proba-
bility of the NewLabel tag is very low. Overall, results with the
lowest energies are obtained using a somewhat low initial tem-
perature , and SA(SW-1). SW-1 alone provides close-to-op-
timal results, in terms of energy. Thus, in the following, results
are reported for SW-1 only.

Comparison With Lapels: Table VIII gives the segmentation
performance on the test set for SW-1 and the lapel baseline. The
proposed approach SW-1 compares well with the lapel base-
line, both in terms of F-measure and DER. The proposed ap-
proach yields major improvement on overlapped speech. These
results are particularly significant, given the high precision of
the ground-truth and the fact that we use distant microphones
only. Indeed, close-talking lapel signals are about 8-dB cleaner
than distant microphone array signals, due to the difference of
distance (Table I). The decrease in precision can be explained
by the automatic SNS decision leading to more False Positives

as compared to lapels, because the decision is taken
without knowledge of the number of speakers. On the contrary,
the number of speakers is implicitly known in the lapel baseline.

Comparison With a Previous Speaker Clustering Work: We
also compared our approach to a HMM-based previous work
[59], on a slightly different task: only six meetings are seg-
mented, and the task excludes silences smaller than 2 s. The re-
sults reported in Table IX show a clear improvement. However,
the previous work was attacking a wider task: speech segmenta-
tion and speaker clustering. This comparison shows that we can
obtain a very good speech segmentation with location cues.

Window Size: In Table VIII, the two results SW-1 and SW-7
show that , the size of the “future” window, has very little
impact on this application. However, this may not be the case in

TABLE IX
COMPARISON WITH A PREVIOUS SPEAKER CLUSTERING WORK: SEGMENTATION

RESULTS ON SIX MEETINGS, WITH A SILENCE MINIMUM DURATION OF 2 S.
VALUES ARE PERCENTAGES: THE LOWER, THE BETTER

TABLE X
F-MEASURE ON THE M4 CORPUS WITH SW-1, FOR TWO TYPES OF

SPEECH/NONSPEECH DECISIONS

other contexts: for example, the confident clustering approach
introduced in Section IV-A requires .

Interest of STC: As in Section V-C, the same segmentation
experiments were also conducted with the speech/nonspeech
decision taken for each location estimate individually—without
short-term clustering. As reported in Table X, the proposed STC
method clearly leads to the best results and is a lot less depen-
dent on segmentation post-processing.. Finally, we noted that
the nonstationarity test mentionned in Section V-B effectively
removes all short-term clusters belonging to the projector.

Overall, the proposed STC method allows to fulfill two
goals of this application: to obtain with distant microphones a
segmentation performance comparable to that obtained with
close-talking microphones, and to handle multiple simulta-
neous speakers in an appropriate manner. It can serve as a
strong starting point for unsupervised speaker clustering with
distant microphones only: [43] reports results superior to that
of a state-of-the-art approach.

VIII. CONCLUSION

Accurate segmentation and tracking of speech in a meeting
room is crucial for a number of tasks, including speech ac-
quisition and recognition, speaker tracking, and recognition of
higher-level events.

In this paper, we first described a generic, threshold-free
scheme for short-term clustering of sporadic and concurrent
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events. The motivation behind this approach is that with highly
sporadic modalities such as speech, it may not be relevant to try
to output a single trajectory for each source over the entire data,
since it leads to complex data association issues. We proposed
here to track in the short-term only, thus avoiding such issues.
The core of our approach is a threshold-free probabilistic cri-
terion. We described an algorithm based on a sliding-window
analysis, spanning a context of several time frames at once.
It is online, can be fully deterministic, and can function in
real-time when using reasonable context durations .
It is unsupervised: local dynamics are extracted from the data
itself, and the short-term clustering is threshold-free. We also
presented investigations on the problem of trajectory crossings,
useful, e.g., in the context of acoustic vehicle tracking [54] or
visual tracking [37]. In this context, experiments on synthetic
data highlighted the benefit of processing several time frames
at once .

Second, we described speech specific applications of this al-
gorithm. Short-term clustering was used to build a multispeaker
detection-localization system with microphone arrays, which
was then successfully applied to both dynamic and static record-
ings with multiple simultaneous speakers. In both cases, short-
term clustering permits to discriminate between speech and non-
speech in a much more advantageous manner, as compared to an
individual decision for each location estimate. Highly dynamic,
nonlinear human motions are well handled by the short-term
clustering algorithm. In particular, a comparison with offline
simulated annealing optimization shows that the proposed on-
line implementation is sufficient. In the case of multiple moving
speakers, short-term clustering followed by deterministic fil-
tering appears clearly superior to an existing multisource par-
ticle filtering approach [28], [29].

In terms of final performance, short-term clustering leads to
a meeting segmentation performance with distant microphones
only, close to that obtained with close-talking microphones.
This result can already be considered as a success, since
distant microphones are much more noisy than close-talking
microphones. Moreover, since multiple speech sources are
effectively “tracked in the short-term,” a dramatic improve-
ment is seen on overlapped speech, which is often found in
spontaneous multiparty speech. These results validate the
short-term clustering algorithm, as well as the idea of relying
on location cues to obtain high precision short-term tracking
and speech segmentation of multiple moving speakers. This,
in turn, permits a much wider range of applications than with
close-talking microphones, due to the nonintrusive aspect
of distant microphones. Investigations on the unsupervised
speaker clustering task with distant microphones [43] show
that short-term clustering permits to obtain a speaker clustering
performance superior to that of a state-of-the-art approach.
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