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Abstract

Objective: To assess the feasibility and robustness of an asynchronous and non-invasive
EEG-based Brain-Computer Interface (BCI) for continuous mental control of a wheelchair.
Methods: In experiment 1 two subjects were asked to mentally drive both a real and a
simulated wheelchair from a starting point to a goal along a pre-specified path. Here we
only report experiments with the simulated wheelchair for which we have extensive data in
a complex environment that allows a sound analysis. Each subject participated in 5 exper-
imental sessions, each consisting of 10 trials. The time elapsed between two consecutive
experimental sessions was variable (from one hour to two months) to assess the system
robustness over time. The pre-specified path was divided in 7 stretches to assess the system
robustness in different contexts. To further assess the performance of the brain-actuated
wheelchair, subject 1 participated in a second experiment consisting of 10 trials where he
was asked to drive the simulated wheelchair following 10 different complex and random
paths never tried before. Results: In experiment 1 the two subjects were able to reach 100%
(subject 1) and 80% (subject 2) of the final goals along the pre-specified trajectory in their
best sessions. Different performances were obtained over time and path stretches, what in-
dicates that performance is time and context dependent. In experiment 2, subject 1 was
able to reach the final goal in 80% of the trials. Conclusions: The results show that sub-
jects can rapidly master our asynchronous EEG-based BCI to control a wheelchair. Also,
they can autonomously operate the BCI over long periods of time without the need for
adaptive algorithms externally tuned by a human operator to minimize the impact of EEG
non-stationarities. This is possible because of two key components: first, the inclusion of
a shared control system between the BCI system and the intelligent simulated wheelchair;
second, the selection of stable user-specific EEG features that maximize the separability
between the mental tasks. Significance: These results show the feasibility of continuously
controlling complex robotics devices using an asynchronous and non-invasive BCI.
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1 Introduction

The possibility to act upon the surrounding environment without using our hu-
man nervous system’s efferent pathways enables a new interaction modality that
can boost and speed up the human sensor-effector loop. In recent years, brain-
computer interface (BCI) research is exploring many applications in different fields:
communication, environmental control, robotics and mobility, and neuroprosthet-
ics (Birbaumer et al., 1999; Obermaier et al., 2003; Bayliss, 2003; Millán, 2003;
Nicolelis and Chapin, 2002; Millán et al., 2004; Carmena et al., 2003). Our work
in the MAIA project 1 aims at developing asynchronous and non-invasive BCI to
control robots and wheelchairs (Millán et al., 2004; Lew et al., 2006). It means
that users control such devices spontaneously and at their own paced, by learning
to voluntary control specific electroencephalogram (EEG) features measured from
the scalp. To this end, users learn how to voluntary modulate different oscillatory
rhythms by execution of different mental tasks (motor and cognitive). To facilitate
this learning process, we rely upon machine learning techniques, both to find those
subject-specific EEG features that maximize the separability between the patterns
generated by executing the mental tasks (Galán et al., 2007), and to train classifiers
that minimize the classification error rates of these subject-specific patterns (Millán
et al., 2004). Finally, to assist the control task, different levels of intelligence are
implemented in the device jointly with shared control techniques between the two
interacting agents, the BCI system and the intelligent device (Philips et al., 2007;
Vanacker et al., 2007).

One of the main challenges of a non-invasive BCI based on spontaneous brain
activity is the non-stationary nature of the EEG signals. Shenoy and co-workers
(Shenoy et al., 2006) describe two sources of non-stationarity, namely differences
between samples extracted from calibration measurements (training data set) and
samples extracted during the online operation of the BCI system (test data set), and
changes in the user’s brain processes during the online operation (e.g., due to fa-
tigue, change of task involvement, etc). Such kind of phenomena have motivated
that BCI research groups develop adaptive algorithms to deal with these shifts in the
distributions of samples (Shenoy et al., 2006; Buttfield et al., 2006; Vidaurre et al.,
2006; Millán et al., 2007). Unfortunately, current adaptive solutions have two main
limitations. Firstly, they are based on supervised approaches requiring the correct
output for every sample and so the user cannot operate the BCI autonomously. Sec-
ondly, adaptation in the wrong moment (e.g., when the user is not executing prop-
erly the mental tasks because of fatigue, distraction, etc) will incorrectly change the
feedback (the device’s behavior) and will disrupt user’s learning process. Given this
scenario, two questions arise. Is it possible to find (rather) stable subject-specific

1 MAIA—Mental Augmentation through Determination of Intended Action,

http://www.maia-project.org
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EEG features to reduce the differences between samples extracted from calibration
and online operation sessions? How shared control techniques can minimize the
impact of changes in the user’s EEG signals during the online operation?

In this paper we describe an asynchronous brain-actuated wheelchair that can be
operated autonomously and report results obtained by two subjects while continu-
ously driving a simulated version of the wheelchair. Our brain-actuated wheelchair
exhibits two key components, namely the selection of stable user-specific EEG fea-
tures that maximize the separability between the different mental tasks, and the
implementation of a shared control system (Philips et al., 2007; Vanacker et al.,
2007) between the BCI and the intelligent simulated wheelchair.

2 Methods

2.1 EEG Data Acquisition and Preprocessing

EEG Data were recorded from 2 healthy subjects with a portable Biosemi acqui-
sition system using 64 channels sampled at 512Hz and high-pass filtered at 1Hz.
Then, the signal was spatially filtered using a common average reference (CAR)
before estimating the power spectral density (PSD) in the band 8-48 Hz with 2 Hz
resolution over the last 1 second. The PSD was estimated every 62.5 ms (i.e., 16
times per second) using the Welch method with 5 overlapped (25%) Hanning win-
dows of 500 ms. Thus, an EEG sample is a 1344-dimensional vector (64 channels
times 21 frequency components). Obviously, not all these 1344 features are used
as control signals. Sections 2.2 and 2.3 describe the algorithms to estimate the rel-
evance of the features for discriminating the mental commands and the procedure
to select the most stable discriminant features that will be fed to the classifier em-
bedded in the BCI. This classifier processes each of the EEG samples and the BCI
combines 8 consecutive responses to deliver a mental command every 0.5 seconds.

2.2 Calibration Sessions and Feature Extraction

To extract stable discriminant EEG features (see Sect. 2.3.2) and build the statistical
Gaussian classifier embedded in the BCI (see Sect. 2.3.3), both subjects participated
in 20 calibration sessions recorded in the same day than the test driving session 1.
The calibration sessions were recorded during the morning and the test driving
session 1 during the afternoon. As in the driving sessions, the subjects sat in a chair
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looking at a fixation point in the center of a monitor. The display was also the
same, the simulated wheelchair in a first person view (see Fig. 1 Left). The subjects
were instructed to execute the three mental tasks (left hand imagination movement,
rest, and words association 2 ), tasks utilized as mental commands to operate the
wheelchair, in a self-paced way. The mental task to be executed was selected by
the operator in order to counterbalance the order, while the subjects decided when
they started to execute the mental task. Each calibration session was integrated by 6
trials each, 2 trials of each class. The duration of each trial was 7 seconds but only
the last 6 seconds were utilized in the analysis to avoid preparation periods where
the subjects were not yet engaged in the execution of the mental task. A trial started
when subjects informed the operator they were executing the requested mental task.
In these sessions the subjects did not receive any feedback, so the monitor display
was static—i.e., the simulated wheelchair did not move.

The data from the 20 calibration sessions were grouped in 4 blocks (B1, B2, B3
and B4) of 5 consecutive sessions. Taking into account the recordings timing, there
were different configurations of training and testing sets (train-test): B1–B2, B1–
B3, B1–B4, B2–B3, B2–B4, B3–B4, (B1+B2)–B3, (B1+B2)–B4, (B1+B2+B3)–
B4. Feature selection was done in a sequential way, where we first picked stable
frequency components and then chose the best electrodes. To assess the stability of
the frequency components we applied 21 canonical variates analysis (CVA), one per
frequency component, on the training set of each configuration. For each canonical
space we ranked the electrodes according to their contribution to this space (see
Sect. 2.3.2). Then, we built up to 15 linear discriminant (LDA) classifiers 3 , each
using those electrodes that contributed more than c%, with c ∈ {1.0, 2.0, ..., 15.0}.
We used the stability of the classifier accuracy over the different configurations to
select the frequency components. In particular, we selected those frequencies that
performed systematically among the top 5. Afterwards, for each selected frequency,
we took the configuration of electrodes (out of the 15 possible ones) that yielded
the highest classification accuracy on the configuration (B1+B2+B3)–B4. Finally,
we tested the different combinations of selected frequencies (with their associated
electrodes) on the configuration (B1+B2+B3)–B4 and chose the best one. At the
end of this sequential process the selected frequencies were 12 Hz for subject 1
and {10, 12, 14} Hz for subject 2. We then built the statistical Gaussian classifier

2 The mental tasks consisted in imagining repetitive self-paced movements of the left hand,

getting relaxed centering attention on the fixation point placed on the center of the monitor,

and searching words starting with the same letter.
3 The reasons for using a LDA classifier for feature extraction rather than the final

Gaussian classifier are the simplicity and speed of training of the former. Furthermore,

LDA is a special case of our Gaussian classifier.
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(see Sect. 2.3.3) for each subject using their individual selected features from all
the data of the calibration sessions. Table 1 reports the LDA classifier accuracies
on the configuration (B1+B2+B3)-B4 using the selected features for each subject.
Accuracies are not very high, what is normal for a first session without feedback,
but still well above random level (33.3% for a 3-class classification problem).

Fig. 2 depicts the electrodes contribution, for each selected frequency component
for each subject, and the associated scalp distribution of the averaged logarithmic
transform of the PSD (Log(PSDe)) for each mental task. The Log(PSDe) scalp
distributions show that the differences between the mental tasks, localized in those
electrodes with higher De values (see Sect. 2.3.2), are bigger for subject 2. This is
in agreement with the train classification accuracies, 59% and 85% for subjects 1
and 2, respectively.

2.3 System Description

The system is integrated by two entities, the intelligent wheelchair and the BCI sys-
tem. Environmental information from the wheelchair’s sensors feeds a contextual
filter that builds a probability distribution PEnv(C) over the possible user’s men-
tal steering commands, C = {Left, Right, Forward}. The BCI system estimates the
probabilities PEEG(C) of the different mental commands from the EEG signals.
Both streams of information are combined to produce a filtered estimate of the
user’s intent P (C) = PEEG(C) ·PEnv(C). The shared control system also uses the
environmental information from the wheelchair’s sensors to map these high-level
commands into appropriate motor commands, translational and rotational veloci-
ties, that generates a smooth and safe driving behavior. This is achieved by con-
stantly adapting the level of assistance provided to the user to negotiate obstacles.
Thus, the intelligent wheelchair, via shared control, will significantly help when the
subject’s performance (BCI accuracy) is low whereas it will decrease its role when
the BCI accuracy is higher. In other words, the intelligent wheelchair will take over
control to avoid obstacles if subjects cannot deliver the proper mental commands
to stay at a safe distance from obstacles and will not activate any assisting behavior
in case subjects can safely drive the wheelchair. Obstacle avoidance is the only as-
sisting behavior used in the experiments. Fig. 3 depicts a schematic representation
of the shared control architecture of the brain-actuated wheelchair. See (Philips et
al., 2007; Vanacker et al., 2007) for a detailed description. As for the BCI, it has
two components: a feature extractor and a Gaussian classifier. The former selects
the most relevant features of the EEG signals based on canonical variates analysis
(Galán et al., 2007). Based on these features, the Gaussian classifier estimates the
probability distributions of the three mental commands (Millán et al., 2004).
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2.3.1 Context-Based Filter

Context estimation is done by defining a general, a priori-known user intention
(smooth and efficient forward navigation through the environment) on the one
hand and a constant automatic estimation of the environmental situation on the
other hand. The situations are modelled as the number and location of openings:
wide, open spaces to which the user might safely navigate. The principle is as fol-
lows: suppose the wheelchair is approaching a crossroad, as depicted in Fig. 4.
The laser scanner in front of the wheelchair scans 180 degrees and senses the dis-
tance to the environment for every degree. The algorithm then searches for regions
with consecutive scans for which the distance is larger than a certain threshold
T. This results in a number of regions that qualify as candidates for an opening.
Next, for each of the resulting regions, the width of the opening O is calculated:
O =

√
s2
1 + s2

2 − 2s1s2cos(t2 − t1). This length is then compared to the physical
dimensions of the wheelchair. If the length O exceeds the wheelchair width aug-
mented with a safety margin, the corresponding region is accepted as an opening.
Its orientation with respect to the current wheelchair position is then π

2
− t2−t1

2
.

Each opening then represents a general direction in which the user might opt to con-
tinue his navigation. With this knowledge about the current situation, a probability
distribution concerning the possible local user actions is built. Note that inferring
these probabilities requires the knowledge of the global intention of the human.
In this case, it is supposed that the user wishes to navigate safely and efficiently
through the environment without halting or going backwards. In other cases, a user
might also wish to stop at certain locations, or dock at particular places. When the
directions in which the robot can travel are orthogonal, as in Fig. 4, it is possi-
ble to summarize the environmental belief in four quadrants, as depicted in Fig. 5.
The figure shows how the regions West and North are deemed probable navigation
directions, as extracted from the environment (see Fig. 4). The regions East and
South are improbable (as the scanner sees a wall on the right hand, and going back-
wards is also not probable given the intention of smooth forward navigation). If the
wheelchair is oriented North, the controller attaches a probability of 0.5 to Forward
and Left. PEnv(Right) is set to zero, because rotating to the right would make the
robot turn towards an obstacle (the wall). The possibility of turning into the corri-
dor to the left is reflected in PEnv(Left) = 0.5. If the wheelchair is oriented 45
degrees North-West, PEnv(Forward) has become zero, while the possible com-
mands now are Left and Right, with equal probability, reflecting the belief that one
of the orthogonal directions North or West should be chosen. When the wheelchair
is turning further towards West, Forward becomes possible again, and PEnv(Right)
stays constant while PEnv(Left) diminishes completely. At the boundary between
the probable directions and those that are improbable, the controller attaches a max-
imum belief to those commands that would keep the wheelchair in the half plane
of high probability. Between the above-described orientations, the probabilities are
interpolated linearly. This is depicted in Fig. 5 as the linearly changing transparency
of the respective circle. See (Vanacker et al., 2007) for a detailed description.
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2.3.2 Feature Extractor

Our approach is based on a mutual learning process where the user and the BCI are
coupled together and adapt to each other. To facilitate and accelerate this process,
it is necessary to select the relevant EEG features that best discriminate among
the mental tasks executed by the user. The feature selection process is based on
Canonical Variates Analysis (CVA) (Krzanowski, 1998), also known as Multiple
Discriminant Analysis (Duda et al., 2001), which provides a canonical solution
for multi-class problems. In our case, CVA extract Canonical Discriminant Spatial
Patterns (CDSP) whose directions maximize the differences in mean spectral power
between a given number of classes.

Let’s Sk = (sk1, ..., sknk
)

′ be the nk × c matrix with the estimated spectral power of
a frequency band for class k = 1, ..., l, where nk is the number of samples and c is
the number of channels. Now, given S = (S

′

1, ..., S
′

l)
′ , the l − 1 CDSP of S are the

eigenvectors A of W−1B whose eigenvalues λu, (u = 1, ..., l − 1) are larger than
0. Note that the direction of the eigenvectors A maximizes the quotient between
the between-classes dispersion matrix B and the pooled within-classes dispersion
matrix W. Thus, the CDSP are obtained by projecting X = SA.

Once the CDSP are computed, it is useful to know how the original channels are
contributing to the separability among the classes. To measure this contribution
we compute a Discrimination index for each channel from the structure matrix—
the pooled correlation matrix between the original channels in S and the CDSP X.
Given the c× (l − 1) structure matrix T, where T =

∑l
k=1 Tk, e = 1, ..., c, and the

normalized eigenvalues γu = λu/
∑l−1

u=1 λu, the proposed discrimination index is
computed as De = (

∑l−1
u=1 γut

2
eu/

∑c
e=1

∑l−1
u=1 γut

2
eu)× 100. See (Galán et al., 2007)

for more details.

2.3.3 Classifier

The classifier utilized is a statistical Gaussian classifier, (Millán et al., 2004) for
more details. The output of this statistical classifier is an estimation of the pos-
terior class probability distribution for a sample; i.e., the probability that a given
single trial belongs to each mental task (or class). Each class is represented by
a number of Gaussian prototypes, typically less than four. That is, it is assumed
that the class-conditional probability function of class k is a superposition of Nk

Gaussian prototypes. It is also assume that all classes have equal prior probability.
All classes have the same number of prototypes Np, and for each class each proto-
type has equal weight 1/Nk. Then, dropping constant terms, the activity of the ith

prototype of class k for a given sample x is the value of the Gaussian with center µi
k

and covariance matrix Σi
k. From this we calculate the posterior probability yk of the

class k, which is the sum of the activities of all the prototypes of class k divided by
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the sum of the activities of all the prototypes of all the classes. The classifier output
for input vector x is then the class with the highest probability. In order to smooth
this output, we average the class-conditioned probabilities of the last 8 consecutive
input vectors x. Thus, the BCI responds every 0.5 s. Usually each prototype of each
class would have an individual covariance matrix Σi

k, but to reduce the number of
parameters the model has a single diagonal covariance matrix common to all the
prototypes of the same class. During offline training of the classifier, the prototype
centers are initialized by any clustering algorithm or generative approach. This ini-
tial estimate is then improved by stochastic gradient descent to minimize the mean
square error E = 1

2

∑
k(yk − tk)

2, where t is the target vector in the form 1-of-C;
that is, if the second of three classes was the desired output, the target vector is
(0,1,0). The covariance matrices are computed individually and are then averaged
over the prototypes of each class to give Σk.

2.4 Experimental Tasks

2.4.1 Task 1

Both subjects sat in a chair looking at a fixation point placed in the center of a mon-
itor. The monitor displayed a simulated wheelchair in a first person view moving in
a simulated world. The subjects were asked to mentally drive the simulated wheel-
chair from a starting point to a goal following a pre-specified path by executing
three different mental tasks (left hand imagination movement to turn Left, rest to go
Forward, and words association to turn Right). Fig. 1 depicts the monitor display
and the pre-specified path. Every subject participated in 5 experimental sessions,
each consisting of 10 trials. The time elapsed between two consecutive experimen-
tal sessions was variable to assess the system robustness over time: 1 day between
sessions 1 and 2, 2 months between sessions 2 and 3, 1 hour between sessions 3
and 4, and finally 1 day between sessions 4 and 5.

2.4.2 Task 2

To further assess the performance of the brain-actuated wheelchair, Subject 1 par-
ticipated in a second experiment four months later. He performed 10 trials in the
same simulated environment where he was asked to drive the simulated wheelchair
following 10 different complex and random paths never tried before. Fig. 6 de-
picts the 10 complex and random paths. Subject 2 did not participated in this task
because she was not available.
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2.5 Analysis

The system’s robustness was assessed in task 1 on three criteria, namely the per-
centage of goals reached, the BCI classification accuracy, and the shared control
accuracy (the actual mental commands sent to the wheelchair after combining the
probability distributions from the BCI and contextual filter). The three criteria were
analyzed over time (5 sessions) and context. For the contextual analysis, the path
was split in 7 stretches. Thus, the system’s performance was measured over the final
goal (complete path) and subgoals (path stretches). Additionally, we compared the
performance of the 2 subjects to that of a random BCI to further assess their level
of mental control. In this case, we use the percentage goals reached by a random
BCI as a reference.

The analysis of the accuracies of the BCI and shared control has a main limita-
tion since it requires to know the subject’s intent. It is true, however, that in the
experiments subjects had to inform verbally the operator whenever they switched
mental task so that the latter could label the data. Unfortunately, this approach is
far from optimal. Indeed, providing this information interferes with, and so ham-
pers, the driving task. As a consequence, the subject may deliver wrong or delayed
mental commands leading to poor trajectories that the subject needs to correct by
rapidly switching between mental commands—and the subject does not have time
to inform the operator of all those switches and their exact timing. It follows that
using the subject’s stated intent for labelling data yields a pessimistic and/or wrong
estimate of the accuracies of the BCI and the shared control. For this reason the
accuracies were estimated in a different way. Each path stretch was labelled with
the command that makes the wheelchair reach the next subgoal. Only those sam-
ples where the subject’s stated intent corresponds to the stretch label were utilized
to compute the accuracies. Fig. 7 shows the 7 labelled stretches.

To avoid the limitations described before, in task 2 the subject drove the wheelchair
without informing the operator about the mental command he was executing. In this
way, the subject could drive the simulated wheelchair in real conditions that allow a
better assessment of the brain-actuated wheelchair. In this case only the behavioral
performance (percentage of goals reached) was assessed.

An issue to be ruled out in any BCI system is the use of eye movements or mus-
cular activity components embedded in the EEG as control signals. In the exper-
iments described in this paper this issue was not assessed directly, but it was in
posterior experiments with the real wheelchair where the two subjects utilized the
same statistical Gaussian classifier as here. In these experiments we monitored eye
movements and muscular activity by means of bipolar electrooculogram (EOG)
using surface electrodes placed below and laterally to the left eye, and by bipolar
electromyogram (EMG) using 2 surface electrodes placed on the forearm muscle
Extensor Digitorum. The analysis of EOG and EMG activity showed that eye move-
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ments were equally distributed among the classes and that there was no significant
muscular activity. Thus, we can conclude that subjects did not use any EOG and/or
EMG feature as control signals. Also, the fact that the selected band frequency is
10-14 Hz makes it very improbable to have EOG/EMG artifacts. Furthermore, in
the experiments reported in this article, we did not observe any overt movement of
the subjects’ left hand.

3 Results

3.1 Task 1

3.1.1 Global Performance

Fig. 8 depicts the percentage of final goals reached over the 5 sessions for the
2 experimental subjects. Subject 1 reached more final goals in all the sessions.
For both subjects, session 1 and session 3 are the sessions with less reached final
goals (40% and 10% in session 1, 50% and 40% in session 3). Note that between
session 2 and session 3 passed 2 months, so sessions 1 and 3 can be considered
as sessions where the subjects learn (session 1) and re-learn (session 3) how to
interact with the system and its dynamics. If these sessions were not considered, the
average percentage of reached final goals are 86.7% and 66.7% for subjects 1 and
2, respectively. Regarding the maximum performances, subject 1 reached the final
goal 100% of the trials in session 4, and subject 2 reached the final goal 80% of the
trials in session 2. It is worth noting that even in the first session where the subjects
had the lowest performance (40% and 10% of reached goals), they significantly
outperformed the random BCI that only reached the goal along the pre-specified
path in 1% of the cases. This figure was obtained by running 100 trials.

Table 2 displays the percentage of reached local goals, the average BCI classifi-
cation accuracy and the shared control accuracy on each session over the 7 path
stretches (local goals) for the two subjects, and the percentage of reached goals for
the random BCI. This table makes it clear the reasons why subjects couldn’t reach
the final goal—they failed sometimes to turn Left at the stretch L and/or to turn
Right at the stretches R1 and R2. Interestingly, in these three stretches shared con-
trol performed generally worse than the BCI, what could indicate that subjects tried
to deliver mental commands that the shared control system considers impossible to
execute. On the contrary, shared control significantly improved the performance of
BCI at stretches F1, SD1, SD2 and F2, where the wheelchair was supposed to go
straight. The average difference over these stretches is 35% for subject 1 (24% BCI

11



vs. 59% shared control) and 20% for subject 2 (34% BCI vs. 55% shared control).
These ‘poor’ accuracies of the BCI and shared control indicate that to drive the
wheelchair straight subjects cannot simply deliver the mental command Forward,
but needed to steer Left and Right. Furthermore, shared control helped to generate
smoother trajectories, especially in the vicinity of walls.

Subject 1 failed to reach the final goal in session 1 because he could not turn Left
at stretch L in 30% of the cases and, afterwards, he failed to turn Right in 40% of
the cases that he successfully arrived to stretch R2. In this session, subject 1 always
performed correctly the optimal action for all other stretches he went through. As
mentioned before, at these ‘hard’ stretches, L and R2, shared control degraded the
BCI performance (50% vs. 62% in L and 47% vs. 53% in R2). Regarding session
3, subject 1 failed to reach the final goal because he could not turn Left at stretch L
50% of the cases. This was due to a low BCI accuracy (42%) and a lower shared
control accuracy (37%). Finally, in sessions 2, 4 and 5 subject 1 reached the final
goal 70% (or more) of the trials and each local goal over 88%.

Subject 2 failed to reach the final goal in session 1 because he could not turn Right
at stretch R1 in 90% of the cases. This was due to a very low BCI and shared
control accuracy (29%). In sessions 3 and 5, the poor final performance was due
to failures in turning Left at stretch L—accuracies of 50% and 40%, respectively.
Similarly to subject 1, also in these two sessions shared control degraded the BCI
performance although less severely (38% vs. 37% in session 3, 48% vs. 39% in
session 5). Finally, in sessions 2 and 4 subject 2 reached the final goal 70% (or
more) of the trials and each local goal over 80%.

Regarding the random BCI, it reached the final goal a mere 1% of the trials because
it was able to turn Right at stretch R1 and to turn Left at stretch L only 16% and
6% of the trials, respectively, percentages significant lower than those achieved by
subjects 1 and 2.

3.1.2 System Performance in Single Trials

Here we analyze the performance of the brain-actuated wheelchair in a few single
trials to show emergent behaviors originated by the interaction of the BCI system
and the shared control system in particular contexts. The experimental results show
that subjects cannot execute a given mental task with the same level of proficiency
all across the trajectories and over time. But, is this the only reason of the inter-
trial differences in BCI classification accuracy for the same path stretch? We have
observed that the interaction of the BCI system and the shared control system in a
particular context plays also a significant role. We have already mentioned in the
previous section that, for some stretches, shared control degraded the performance
of the BCI, what could indicate that subjects tried to deliver mental commands that
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the shared control system considers impossible to execute. Here we take a closer
look at this situation.

Table 3 shows the performance for subject 1 in session 4 for trials 2 and 8 at two
stretches, R1 and R2, requiring the same command. Subject 1 always succeeded
in making the wheelchair turn Right. However, the BCI and shared control perfor-
mances were rather different. Thus, we can see that whenever the BCI accuracy
is sufficiently high (92% in trial 2 stretch R1, 74% in trial 8 stretch R2) the shared
control accuracy is much lower (67% and 53%, respectively). The opposite happens
when the BCI accuracy is not that good (trial 2 stretch R2 and trial 8 stretch R1).
The implication for the subjects is that they need to learn a model of the shared con-
trol system (and its interaction with the BCI) to develop successful driving strate-
gies, otherwise their BCI proficiency cannot be fully exploited and, eventually, can
hamper the behavior of the wheelchair. But for the subjects to learn that model they
need to have a stable performance of the brain-actuated wheelchair. Table 2 shows
that, in many cases, the shared control accuracy is rather stable independently of
the performance of the BCI (see, in particular, trial 2).

3.2 Task 2

Subject 1 reached the final goal 80% of the trials. He failed in the last 2 trials,
where he was not able to turn Right at the starting point. Making this first Right
turn requires a very high BCI performance because the subject has to rotate the
wheelchair by 90 degrees almost in place (i.e., without entering the corridor it is
facing). Indeed, the execution of even a short number of wrong commands in this
context makes the shared control system to move the wheelchair Forward. Once the
wheelchair is in the corridor, the shared control system makes it very hard to turn
back (180 degrees) rapidly and the trial is considered a failure. To illustrate the be-
havior of the brain-actuated wheelchair in this task, we have included a supplemen-
tary video clip (WMV file, supplementary material) which contains the trajectories
generated on trials 7 (successful) and 10 (unsuccessful).

4 Conclusions

In this paper we have presented an asynchronous and non-invasive EEG-based BCI
prototype for brain-actuated wheelchair driving. The system can be autonomously
operated by the user without the need for adaptive algorithms externally tuned by
a human operator to minimize the impact of EEG non-stationarities. Our brain-
actuated wheelchair has two key components. First, the selection of stable user-
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specific EEG features that maximize the separability between the patterns gener-
ated by executing different mental tasks. Second, the inclusion of a shared control
system between the BCI system and the intelligent simulated wheelchair. The re-
ported experiments with two subjects have shown that both were able to reach 90%
(subject 1) and 80% (subject 2) of the goals one day after the calibration of the BCI
system, and 100% (subject 1) and 70% (subject 2) two months later. It is worth
noting that both subjects reached less goals in the first session (one hour after the
calibration of the BCI system) and in the third session (two months after the cal-
ibration of the BCI system), sessions where the subjects learn or re-learn how to
interact with the system and its dynamics. As a consequence, subjects need to cope
with the need to generate stable EEG patterns even in the presence of distracting
events such as unexpected trajectories of the wheelchair due to the interaction be-
tween its intelligence and the context. However, even in these sessions, the subjects
showed significant brain-actuated control of the simulated wheelchair: indeed, a
random BCI can only reach a mere 1% of the goals.

In agreement with the results obtained in (Vanacker et al., 2007), the analysis over
different path stretches shows that the shared control system boosts the BCI perfor-
mance when it is low, while it may even degrade it when the BCI performance is
higher because the user driving strategy it is not compatible with the context-based
filter. This could explain why subject 1 achieves better performance in task 1 than
subject 2 despite the lower LDA classification accuracies on the calibration session
(see Table 1). As a consequence, the subject has to learn when these situations oc-
cur in order to develop successful driving strategies compatible with the rules of the
shared control system. On the other hand, a low BCI accuracy during the driving
tasks does not necessarily imply that the BCI is not working correctly. This accu-
racy is estimated according to the user’s stated intent and/or the optimal command
for each stretch, while for a proper control of the wheelchair subjects need to make
steering corrections and so switch rapidly between mental commands. For this rea-
son we believe that the assessment of an intelligent brain-actuated device cannot
simply be based on the BCI performance. As illustrated by the results achieved in
task 2, our approach makes it possible for subject 1 to drive along complex paths
once he was “free” to concentrate on the task, as he did not need to inform the
operator of the mental commands he intended to deliver to the wheelchair.

In this article we have demonstrated our approach with healthy subjects. However,
it is worth noting that our approach should also work for disabled people since it
is based on an individual calibration. This calibration procedure, which is common
to all users, selects user-specific features that are relevant and stable. In addition,
the approach is not based on a fixed set of mental tasks, but subjects can choose
those tasks they feel more comfortable with and yield EEG patterns that are more
discriminant among themselves.

This discussion brings up a critical issue of a BCI, namely training. Several groups
have demonstrated that subjects can learn to control their brain activity through
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appropriate, but lengthy, training in order to generate fixed EEG patterns that the
BCI transforms into external actions (Birbaumer et al., 1999; Wolpaw and Mc-
Farland, 2004). In this case the subject is trained over several months to modify
the amplitude of their EEG signals following bio-feedback approaches. Contrarily,
we follow a mutual learning process to facilitate and accelerate the user’s training
period. Subjects still need to learn to modulate their EEG but not all the training
burden is on their shoulders-the use of statistical machine learning facilitates the
selection of relevant, stable EEG features and the design of optimal classifiers. As
shown for the experiments in task 1, subjects can control the wheelchair since the
first day with a performance significantly better than a random BCI.
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Table 1
LDA train-test classification accuracies on the configuration (B1+B2+B3)-B4 using the
selected features for each subject.

Subject Train Test

1 59.0% 54.7%

2 85.0% 61.2%

17



Table 2
Percentage of local goals reached (subgoals), average BCI classification accuracy and av-
erage shared control accuracy over the 7 path stretches.

Subject Criterion Session Path Stretch

F1 R1 SD1 L SD2 R2 F2

1 100 100 100 70 100 57 100

2 100 100 100 90 100 100 100

Subgoals (%) 3 100 100 100 50 100 100 100

4 100 100 100 100 100 100 100

5 100 90 100 89 100 88 100

1

1 18/45 73/62 20/40 62/50 18/33 53/47 23/67

BCI / 2 22/52 73/70 26/53 57/55 20/58 68/67 19/58

Shared Control 3 34/62 70/59 22/46 42/37 15/78 69/63 29/85

Accuracy (%) 4 28/55 70/63 22/66 54/51 16/57 69/64 25/68

5 33/62 56/51 29/62 53/52 29/63 56/47 30/75

1 100 10 100 100 100 100 100

2 100 100 100 90 100 89 100

Subgoals (%) 3 100 100 100 40 100 100 100

4 100 80 100 88 100 100 100

5 100 100 100 50 100 100 100

2

1 40/61 29/29 17/42 89/89 25/83 61/68 36/50

BCI / 2 33/41 71/68 40/62 57/59 26/48 66/65 35/61

Shared Control 3 40/55 77/75 40/57 38/37 26/56 73/67 48/70

Accuracy (%) 4 38/46 62/63 46/62 49/53 38/48 77/77 35/61

5 31/42 65/63 27/43 48/39 27/43 77/74 24/54

Random Subgoals (%) - 100 16 100 6 100 100 100
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Table 3
Inter-trial differences in performance: subject 1, session 4.

Trial Stretch BCI Acc. Shared control Acc. Wheelchair Behavior

2 R1 92% 67% Right

R2 48% 68% Right

8 R1 65% 76% Right

R2 74% 53% Right

Figure 1. Left: monitor display in a first person view from the Start. The white cursor at the
center is the fixation point. The rectangle at the bottom is the simulated wheelchair. Right:
top view of the simulated world and the pre-specified path.
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Figure 2. Electrode discrimination index values De (see Sect. 2.3.2) for the selected fre-
quencies for each subject, and the associated scalp distribution of the averaged logarithmic
transform of the power spectral density, Log(PSDe), for each class. For subject 1, De is
higher at left temporal, central and right occipital areas. For subject 2, at 10 Hz it is higher at
right centro-parietal areas, and at 12 and 14 Hz it is higher at bilateral parietal areas. These
areas correspond with those where the differences between the averaged Log(PSDe) pat-
terns associated to each mental task is the biggest.

Figure 3. Architecture of the brain-actuated wheelchair.
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Figure 4. Principle of context estimator. With a laser range scanner, a set of regions that
provide safe manoeuvrable openings in the environment is detected. The figure shows how
the region to the left and the one in front of the wheelchair are detected as openings.

Figure 5. Extracting user intent from the context in function of the wheelchair orientation.
Four quadrants are shown, representing a situation in which possible directions are arranged
orthogonal. The inner circle shows the probability of a Right command, the middle circle
the probability of a Left command and the outer circle the probability of a Forward com-
mand.
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Figure 6. Top view of the random paths in Task 2. Trial 1 placed in upper row, first column.
Trial 10 placed in second row, last column.

Figure 7. Top view of the world and the path stretches. Stretches F1 and F2 were labelled
as Forward, R1 and R2 labelled as Right, L labelled as Left, and SD1 and SD2 labelled
as strategy dependent. The subjects can go through SD1 by means of two strategies, either
executing Forward or executing Right followed by Left. Through SD2, subjects can execute
either Forward or Left followed by Right.
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Figure 8. Percentage of reached final goals over sessions. The time elapsed between ses-
sions was: 1 day between sessions 1 and 2, 2 months between sessions 2 and 3, 1 hour
between sessions 3 and 4, and 1 day between sessions 4 and 5.
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