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Abstract

This paper studies the problem of reproducible research in remote photo-
plethysmography (rPPG). Most of the work published in this domain is
assessed on privately-owned databases, making it difficult to evaluate pro-
posed algorithms in a standard and principled manner. As a consequence,
we present a new, publicly available database containing a relatively large
number of subjects recorded under two different lighting conditions. Also,
three state-of-the-art rPPG algorithms from the literature were selected, im-
plemented and released as open source free software. After a thorough, un-
biased experimental evaluation in various settings, it is shown that none of
the selected algorithms is precise enough to be used in a real-world scenario.

Keywords: Image analysis, Remote photoplethysmography, Reproducible
research, Vital signs monitoring

1. Introduction

Photoplethysmography (PPG) consists in measuring the variation in vol-
ume inside a tissue, using a light source. Since the heart pumps blood
throughout the body, the volume of the arteria is changing with time. When
a tissue is illuminated, the proportion of transmitted and reflected light varies
accordingly, and the heart rate could thus be inferred from these variations.
The aim of remote Photoplethysmography (rPPG) is to measure the same
variations, but using ambient light instead of structured light and widely
available sensors such as a simple webcam.
It has been empirically shown by Verkruysse et al. [14] that recorded skin
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colors (and especially the green channel) from a camera sensor contain sub-
tle changes correlated to the variation in blood volumes. In their work, they
considered the sequence of average color values in a manually defined region-
of-interest (ROI) on the subject’s forehead. After having filtered the obtained
signals, they graphically showed that the green color signal main frequency
corresponds to the heart rate of the subject.
Since then, there have been many attempts to infer the heart rate from video
sequences containing skin pixels. Notable examples include the work by Poh
et al. [9], where the authors proposed a technique where the color signals are
processed by means of blind source separation (ICA), in order to isolate the
component corresponding to the heart rate. In a similar trend, Lewandowska
et al. [5] applied Principal Component Analysis (PCA) to the color signals
and then manually selected the principal component that contains the varia-
tion due to blood flow. These two early studies empirically showed that the
heart rate could be retrevied from video sequences of faces, but also highlight
important limitations: the subject should be motionless, and proper lighting
conditions must be ensured during the capture. According to a recent survey
[7], research in remote heart rate measurement has considerably increased in
the last few years, most of which focuses on robustness to subject motion
and illumination conditions. Since a large number of approaches have been
proposed recently, they will not be discussed here. We refer the interested
reader to [7] for a comprehensive survey of existing algorithms.
Despite the vast amount of published material on the subject, there are still
no standard evaluation procedures for remote heart rate estimation. One
of the main reasons being the limited amount of datasets containing video
sequences with accompanying physiological measurements [7]. Our work is
hence motivated by the lack of standard comparison of rPPG approaches on
publicly available databases. Indeed, most of the algorithms are assessed on
privately-owned databases, making it difficult to compare in a fair manner
or to accurately reproduce them.
As a consequence, the contribution of our work is as follows: first, we present
a new, publicly available database to assess the performance of remote pulse
rate measurement algorithms. This database comprises a relatively large
number of subjects and various illumination conditions. Second, we experi-
mentally test selected state-of-the-art rPPG algorithms using both the Man-
hob HCI-Tagging database [11] and our new database. The selected baseline
algorithms are provided as an open-source, free software package that every
researcher in the field can download to reproduce results presented in this
paper [4].
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2. Publicly available databases

2.1. Mahnob HCI-Tagging

The Mahnob HCI-Tagging dataset was not designed for rPPG bench-
marks, but rather for the characterisation of multimedia content based on
human emotions. For that purpose, dataset authors collected video and phys-
iological data from 30 subjects being exposed to different audio-visual stimuli
such as the display of pictures and short to medium-sized video sequences.
The Manhob HCI-Tagging dataset may be used to evaluate rPPG techniques
by ignoring most of its data contents and manually correlating physiological
signals with the data from the professional camera located in front of the
subject being tested. An example image capture for the Mahnob dataset
is shown on Figure 6. Authors indicate professional lighting was used so
as to maximize the video data quality. The professional camera used out-
puts videos of size 784 (h) by 592 (w) pixels at a rate of 60 Hz. Three
electro-cardiogram (EKG) sensors placed on the participants chest measure
the individual heart rate. The data extracted from those sensor readings
is also made available in the dataset and are synchronized with the video
recordings.
Figure 1 shows the outputs of the three EKG sensors (in blue). The esti-
mated heart rate for the subject on the video must be estimated from these
by first running a QRS detector [8] which estimates the location of vertical
(red) bars corresponding to true heart-beat events1, followed-up by a consen-
sus heuristic (voting) for selecting the estimate rate from one of the channels.
Because sequences are rather short (30-60 seconds) and the subject is com-
fortably sitting, it is assumed the heart rate does not vary greatly during the
session. Once the heart rate is estimated for every sequence in the Mahnob
HCI-Tagging database (there are 3’490 videos on the dataset), it is possible
to use it for rPPG benchmarking.

2.2. The COHFACE dataset

The COHFACE dataset2 is composed of 160 videos and physiological sig-
nals collected from 40 healthy individuals. The data collection campaign
spawned several days. The data acquired in this new corpus includes more
realistic conditions as compared to the well-controlled setup for recording the
Manhob HCI-Tagging data.

1the MNE package was used for this purpose. http://mne-tools.github.io/stable/
index.html

2https://idiap.ch/dataset/cohface
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Figure 1: Example of collected electro-cardiogram signals. Signals provided with the
database are depicted in blue. Red stripes indicate the result of QRS detection. The
estimated heart rate is shown on the top of each graph in terms of bpm.

The age distribution from the 40 individuals is shown in Figure 2. The av-
erage subject age is 35.6 years old, with a standard deviation of 11.47 years.
Gender-wise, there were 12 women (30%) and 28 men (70%).

2.2.1. Data collection

Individuals were asked to look into a conventional webcam connected to
a laptop during a period of approximately 60 seconds. We registered both
video and physiological signals (contact photoplethysmography and respira-
tion) using a biomedical toolkit that synchronized the 3 input channels. The
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Figure 2: Age distribution for subjects at the COHFACE dataset.

physiological data shall be used as ground-truth for benchmarking rPPG al-
gorithms.
For each of the 160 videos, the subject’s face is recorded by a commodity we-
bcam (Logitech HD Webcam C525) during a full minute, while physiological
readings are taken by a Blood-Volume Pulse (BVP) sensor and a respiration
belt, both from Thought Technologies (BVP model SA9308M, belt model
SA9311M). The BVP sensor measures changes in skin reflectance to near-
infrared lighting caused by the varying oxigen level in the blood due to heart
beating. The respiration belt is composed of a mechanical coiling system that
simply measures thoracic stretch. Both sensors are connected, following ad-
vice from Thought Technologies, to a computer running Microsoft Windows
via their 2-channel USB-based acquisition system (ProComp2). Data from
the physiological sensors together with the video stream from the webcam
is synchronized and recorded using Thought Technologies’ BioGraph Infiniti
Software suite, version 5. With the standard settings, BioGraph Infiniti v5
was able to output a video stream with a resolution of 640 x 480 pixels at 20
frames per second, together with BVP measurements 256 times per second
and, respiration sensor readouts 32 times per second. Figure 3 shows two
images as captured by the webcam. Figure 4 shows typical signals acquired
in sync with the video data, corresponding to the subject’s pulse (top, in
blue) and the respiration readings (bottom, in blue).
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Figure 3: Example images of the COHFACE dataset. (a) Studio (b) Natural
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Figure 4: Example signals acquired for each session in the COHFACE dataset.

To estimate the heart and respiratory rates from the signals read-out
from our physiological sensors, a simple peak detector was deployed. While
the Mahnob HCI-Tagging dataset contains EKG signals from which a QRS
complex can be detected, pulse signals readout by the contact PPG sensor
used at the COHFACE dataset acquisition look sensibly simpler (see Fig-
ure 4) and just applying a Pan and Tompkins detector [8] would not work as
expected.
After testing, we decided to adopt a simple peak-detector available as free
software3, which deployment results in the detected peaks (bars in red) also
shown in Figure 4. The estimated heart and respiratory rates can then be

3https://github.com/demotu/BMC/blob/master/functions/detect_peaks.py
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easily calculated from the peak positions as shown on the title bars of the
same figure.

2.2.2. Acquisition Protocol and Illumination Changes

Each of the 40 individuals was asked to sit still in front of the webcam
so that the face area is captured in full, for four sessions that lasted about 1
minute. Illumination on the scene was changed once as to create two types
of lighting conditions:

1. studio, for which we closed the blinds, avoiding natural light, and used
extra light from a spot to well illuminate the subject’s face, and

2. natural, in which all the lights were turned off and the blinds were
opened.

The four video sequences (2 with studio lighting and 2 with natural light-
ing) can be used to evaluate the performance of rPPG algorithms in either
matched or unmatched settings. Figure 3 shows the differences in illumina-
tion for the two conditions of acquisition for the COHFACE dataset.

2.2.3. File Formats and Metadata

The choice of formats for data distribution aimed on improving readabil-
ity and access using free software tools. Data for the video stream in each
session and for each individual is shipped in MP4 format inside a commonly
available AVI movie container. Data from the physiological sensors is dis-
tributed using standard HDF5 containers, with information such as the date
of birth of the subject, his gender, the illumination condition and of course
the recorded pulse and respiration signals.

2.2.4. Comparison to Mahnob HCI-Tagging

Table 1 summarizes the differences between the only two public datasets
for rPPG benchmarking. While the Mahnob HCI-Tagging dataset provides
more video samples, the COHFACE dataset allows more realistic testing for
the use of rPPG due to its increased data variability (more subjects and more
realistic data acquisition conditions).

3. Selected Baseline Algorithms

In this section, algorithms which have been selected for establishing base-
lines on our new database are presented. Three different approaches to re-
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Table 1: Key figures of the COHFACE dataset when compared to the Mahnob HCI-
Tagging dataset for the purpose of remote non-contact PPG benchmarking.

HCI-Tagging COHFACE

Subjects 30 40
Samples 3490 160
Camera 784x592@60Hz 640x480@20Hz

Physiological Signals 3 × EKG BVP + Respiratory Belt
Illumination Studio Studio + Natural

trieve the pulse signal have been chosen and are detailed in the following
subsections.

3.1. CHROM

The so-called CHROM approach [3] is relatively simple, and has been
shown to outperfom previous baselines such as ICA [9] and PCA [5]. The
algorithm first applies a color filter based on a one-class SVM to find skin-
colored pixels in each frame of the input sequence. Then, the mean skin color
value is projected onto the proposed chrominance subspace, which aims to
reveal subtle color variations due to blood flow. The final pulse trace is ob-
tained by first bandpass filtering the temporal signals in the XY chrominance
colorspace, and then combining the two dimensions of this colorspace into a
one-dimensional signal (see Figure 5). Note that in our implementation, we
did not use a one-class SVM as the skin color filter, but a recent approach
proposed by Taylor [13]. An example of the obtained skin mask with this
algorithm is shown in Figure 5.

Figure 5: Flowchart of the CHROM algorithm to retrieve the pulse signal.

This approach was applied to no less than 117 static subjects, where
different skin tones were represented. The recordings have been made in a
controlled environment and using professional studio illumination. Obtained
performances for the CHROM algorithm, as well as for the baselines used
for comparison are almost perfect (with a Pearson’s correlation coefficients
between 0.97 and 1). Also, another experiment was presented on exercising
subjects, either on a bike or on a stepping device. As expected, performance
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degrades, but the CHROM algorithm was shown to better mitigate the effect
of subject’s motion on the rPPG signal, as compared to previous baselines.

3.2. LiCVPR

The algorithm pusblished by Li et al. [6] has been included in selected
baselines since it is the only rPPG approach which reports results on a pub-
licly available database [11]. Hence, it provides a reference and allows com-
parison between published material and our implementation of the different
algorithms. This approach relies on the tracking of the bottom part of the
face, defined by keypoints as shown in Figure 6. The keypoints are detected
thanks to the DMRF algorithm [1] in the first frame of the sequence and are
used to build the mask. The position of this mask is updated at each subse-
quent frame by applying an affine transformation found by a KLT tracker on
features detected by a Shi-Tomasi detector [10] inside the face region. Once
the temporal signal corresponding to the mean green value inside the tracked
area has been built, it is corrected for illumination using the Non-Linear Mean
Square algorithm with the mean green value of the background as reference.
Large variations in the corrected signals, probably due to subject motion, are
removed according to statistics computed on the entire database. Finally, the
pulse signal is obtained by applying a detrending filter [12] to reduce slow
trends in the signal, a moving average filter to remove noise and a bandpass
filter to retain the range of interest corresponding to plausible heart rate
values. A flowchart of the whole procedure is given in Figure 6.
Experiments are performed on two different datasets. The first one has been
built with 10 subjects recorded under controlled conditions, and individuals
were explicitly asked to avoid any movement. Note that this dataset has not
been made public by the authors. The second one is a subset of the Man-
hob HCI-Tagging dataset, containing only sequences lasting more than 30
seconds. The performance of the proposed algorithm on the first, controlled
video sequences is almost perfect, reaching a Pearson’s correlation coefficient
of 0.99. However, on the less controlled data from the Manhob HCI-Tagging
database, there is a slight drop in performance with a reported correlation
coefficient of 0.81.

Figure 6: Flowchart of the LiCVPR algorithm to retrieve the pulse signal.
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3.3. 2SR

Wang et al. recently proposed a novel algorithm termed as Spatial Sub-
space Rotation (2SR) [15]. In their approach, the authors consider the sub-
space of skin pixels in the RGB space and derive the pulse signal by analyzing
the rotation angle of the skin color subspace in consecutive frames. To do so,
the eigenvectors of the skin pixels correlation matrix are considered. More
precisely, the angle between the principal eigenvector and the hyperplane
defined by the two others is analyzed across a temporal window. As claimed
by the authors, this algorithm is able to directly retrieve a reliable pulse sig-
nal, and hence no post-processing step (i.e. bandpass filtering) is required.
However, this algorithm needs an accurate estimate of the skin color, since it
is implicitly assumed that the skin colored pixels form a single cluster in the
RGB space. In our work, the same skin color filter [13] as in the CHROM
method is used, allowing a fair comparison between these two approaches.
Experimental results obtained on a private dataset containing 54 video se-
quences show better overall performances than all the approaches considered
for comparison, including CHROM. A correlation coefficient of 0.94 is re-
ported across a wide variety of conditions, including skin tone, motion of the
subject and recovery after exercise.

4. Experimental assessment of selected baselines

In this section, results obtained with the algorithms described in Sec-
tion 3 on both the Manhob HCI-Tagging and the COHFACE databases are
reported. We chose to use the same performances metrics as in [6], namely
the root mean square error (RMSE) and the Pearson’s correlation coefficient
ρ. As a first step, we tried to reproduce results already published in the
literature. We then go in more details in the assessment of the different ap-
proaches. A thorough evaluation is made regarding the generalization ability
to unseen data, including the robustness to different acquisition conditions.
For this purpose, several experimental protocols are defined in respective
subsections.
For all of the investigated approaches, the face is first located in each frame
using a detector based on a boosted cascade of LBP features [2]. Further-
more, the average heart rate over a video sequence is inferred from the pulse
signal by detecting the maximum value in the frequency spectrum of the
estimated pulse signal.
Note finally that all the data, algorithms and scripts used to produce results
presented in this paper are freely available for download to ensure maximum
reproducibility [4].
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4.1. Baselines

As a starting point, obtained results on the same subset of the Manhob
HCI-Tagging database as used by Li et al. [6] are presented. This data sub-
set consists in 527 sequences of 30 seconds. These sequences are obtained by
considering selected video files from frame 306 to frame 2135. Table 2 report
the RMSE and the correlation coefficient with the ground truth on these 527
sequences. We also report, for each algorithm, the number of free parameters
that have been optimized directly on this dataset.
Since testing all possible combinations of the different parameters is virtu-
ally impossible, the following strategy was adopted: because investigated
approaches generally involve a serie of sequential steps, we first optimize the
parameters of the first step (the threshold on the skin color probability, for
instance), fix them, and keep on with the optimization of the parameters of
the second step, and so on.

Table 2: Results of our implementations of baselines on 527 sequences of the Manhob
HCI-Tagging database, from frame 306 to 2135

LiCVPR CHROM 2SR

RMSE 8.12 15.40 18.4

Pearson’s ρ 0.70 0.33 0.43

# of parameters 12 6 4

The first point to note here is that we were unable to reproduce results
reported by Li et al. [6], where a RMSE of 7.62 and a correlation coefficient
of 0.82 are presented. We can say with high confidence that these differences
are only due to the tracking procedure and the considered background area.
Indeed, the authors of [6] shared their source code, except the tracking part,
hence making their algorithm only partially reproducible. However, this algo-
rithm still significantly outperforms the two other baselines. Note also that
our own implementation of the spatial subspace rotation (2SR) algorithm
does reflect findings reported in [15], where the authors empirically showed
that their approach outperforms CHROM [3], which is also the case here.
Finally, it is important to point out that the various parameters, such as the
threshold on motion elimination [6], or the window size in the overlap-add
procedure [3], have been tuned directly on the test data, following the practice
in [6]. Doing so introduces a severe bias, since the generalization ability of
each algorithm to unseen data could not be established. As a consequence,
we devised strict experimental protocols for subsequent experiments, speci-
fying data for training (i.e. optimizing the free parameters) and for testing.
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These various protocols are presented in the next subsections.

4.2. Unbiased performances in clean illumination conditions

In a pattern recognition framework, such as the one here, it is important
to train and test proposed algorithms on different datasets. This is done to
assess the generalization ability of the different approaches to unseen data.
Indeed, it could be the case that some combination of free parameters would
perform well on certain kind of data (say, a particular skin tone, for in-
stance), while failing in other conditions. Using different datasets for tuning
the algorithms and evaluating their performances is hence critical to have a
clear insight of their generalization capabilities. In rPPG research however,
there are - to the best of our knowledge - no published results following this
paradigm. This could be due to the fact that databases are generally expen-
sive to collect and hence rather small.

4.2.1. Manhob HCI-Tagging

The complete Manhob HCI-Tagging database contains 3490 video se-
quences recorded during 4 sessions, with constant acquisition conditions. The
only difference between the sessions consists in the task assigned to the par-
ticipants, and that should not affect the performance of any rPPG algorithm.
However, there is a great amount of variation in sequence length, since the
smallest sequence contains 556 frames and the largest 15780, the mean being
1789 frames. Different sets were built based on subjects identities, ensuring
no overlaps between training and test sets. Also, since the sequence duration
is usually correlated with the session, all sessions corresponding to selected
subjects were included in the set. This is done to balance the mean sequence
duration across the different sets. The training set has been built using data
from 19 subjects and the test set with data of the remaining 10 subjects.
Table 3 summarizes relevant information about this partitioning.

Table 3: Statistics for training and test sets of the Manhob HCI-Tagging database. The
minimum, maximum and mean length are given in number of frames.

Set # of sequences min length max length mean length

Train 2302 556 13106 1812

Test 1188 579 15780 1745

We then applied the different baseline algorithms to the different sets of
the Manhob HCI-Tagging database. Table 4 shows the Pearson’s correlation
coefficients obtained when parameters are optimized on the training set.
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Table 4: Pearson’s correlation coefficient on different sets of the Manhob HCI-Tagging
database

Training set Test set

LiCVPR 0.49 0.45

CHROM 0.15 0.14

2SR 0.17 0.05

As can be seen on Table 4, obtained performance is generally better on
the training set than on the test set, as expected. Also, it can be observed
that performance is not as good as in the previous experiment (Table 2).
This can be mainly explained by considering two points. First, the length of
the different sequences greatly varies, and some parameters may yield to an
overall better behaviour if the sequences are of the same duration (i.e. some
parameters value may be best suited to long sequences). As a matter of fact,
optimal parameters on the training set are different than the ones obtained
in the previous experiments. Secondly, and a more obvious reason for this
performance drop is that more sequences introduces more variations.

4.2.2. COHFACE

Since the COHFACE dataset contains two distinct illumination condi-
tions, different experimental protocols have been devised. For this test how-
ever, we only consider studio conditions, i.e. when the face is well-lit by the
spot (see Figure 3a). To generate training and test sets, the same approach
as with the Manhob HCI-Tagging database has been applied: 24 subjects
were selected to build the training set, and the 16 remaining subjects form
the test set. Considering studio conditions only, this partitioning results in
48 sequences for the training set and 32 for the test set (there are 2 sequences
for each subject).

Table 5: Pearson’s correlation coefficient for the studio protocol on different sets of the
COHFACE database.

Training set Test set

LiCVPR -0.16 -0.61

CHROM 0.23 0.43

2SR 0.07 -0.31
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Results in Table 5 should be compared to the ones reported in Table 2:
sequences are approximatively of the same length and recorded in clean illu-
mination conditions. In this case however, obtained results are much worse
for two out of the three studied algorithms. On this database, they prove to
be incapable at inferring the heart-rate reliably, since their Pearson’s corre-
lation coefficient is close to zero and even negative in the case of LiCVPR.
This result, although suprising, is interesting: it emphasizes the sensitivity of
these approaches to different acquisition conditions. Indeed, the COHFACE
database has both lower resolution and framerate. On the other hand, the
performance of the CHROM algorithm remains consistent across these differ-
ent datasets. An interesting point to note is that it actually performs better
on the test set than on the training set. This could mean that its performance
is less sensitive to its parameters, which is a nice feature: it suggests a good
generalization ability to unseen video sequences. However, it should be noted
that optimal parameters for the training set of the COHFACE database are
generally not the same as the one used in the very first experiment.

4.3. Evaluation on umatched conditions

An interesting and realistic scenario is to use rPPG algorithms across a
wider range of aquisition conditions. Think, for instance, of a usage on a
mobile device in different rooms, where the lighting conditions are not the
same. It would be an additional burden to readjust different parameters each
time there is a change in the environment. Hence it is important to assess
the behaviour of the different approaches in various settings. Such cases have
been emulated with two different experiments presented below.

4.3.1. Cross database

Although the two considered databases were partly recorded in quite sim-
ilar conditions (indoor, controlled illumination), it is of interest to test the
behaviour of the different approaches in a cross-database setting. For this
purpose, we first tune the algorithms on the training set of the Manhob HCI-
Tagging database and test them on the studio test set of the COHFACE
database. For the second experiments, algorithms are optimized on the stu-
dio training set of the COHFACE database and tested on the test set of the
Manhob HCI-Tagging database.

Results reported in Table 6 shows an interesting behaviour. Indeed, when
algorithms are tuned on the Manhob HCI-Tagging database, their perfor-
mance on the test set of the COHFACE database is better than when tuned
with the same database. However, results for both LiCVPR and 2SR are still
not satisfactory. While such a behaviour may seem surprising, it only means
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Table 6: Pearson’s correlation coefficient in cross-database testing.

LiCVPR CHROM 2SR

HCI → COHFACE -0.20 0.51 -0.15

COHFACE → HCI 0.25 0.10 0.00

that optimal parameters on the training set of Manhob HCI-Tagging also suit
well the data in the COHFACE studio test set. This can be due to the wider
variety of sequences to tune parameters, since the training set of the Manhob
HCI-Tagging database contains much more sequences than the training set
of the COHFACE database. In the second experiment however, one can see
that performance is generally worse than the one reported in the second col-
umn of Table 4, as expected. In this case, the limited amount of sequences
in the COHFACE studio training set prevents to find optimal parameters
for the more generic conditions in the test set of the Manhob HCI-Tagging
database. Again, these experiments underline the extreme sensitivity of the
different approaches to their respective parameters. Note finally that the
performances of CHROM on both test sets are comparable, suggesting its
higher stability to different configurations.

4.3.2. Illumination conditions

Since the COHFACE database contains two distinct illumination con-
ditions (see Figure 3), one is now able to test the generalization of rPPG
algorithms to different illumination conditions. The number of recordings
under natural lighting is the same as in well-lit conditions, meaning that the
natural test set contains 16 subjects and 32 video sequences. To test the
behaviour in mismatched conditions, parameters were tuned on the studio
training set, and applied to the natural test set. Performance in unmatched
illumination conditions are reported in Table 7.

Table 7: Pearson’s correlation coefficient on the natural test set of the COHFACE
database.

LiCVPR CHROM 2SR

Studio → Natural -0.24 -0.03 0.00

As expected, obtained results generally show a drop in performance as
compared to the test set in studio conditions (Table 5). This denotes again
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the need for a careful selection of the parameters, and suggest that none
of the selected algorithms are suitable to achieve acceptable performance in
realistic scenarios, where the acquisition conditions are unknown a priori.

4.4. Importance of the ROI

In the next experiments, we consider the whole COHFACE dataset, with
both lighting conditions. Doing so will allow to get insights on the perfor-
mances in a more generic setting in terms of illumination, corresponding to
more realistic conditions. Using the full dataset, there are now 96 sequences
in the training set, and 64 in the test set. Note that both sets contain
sequences recorded under the two different lightings, there is no mismatch
between training and testing, but rather a wider range of variability.

Since all investigated rPPG algorithms first extract skin pixels, it is inter-
esting to see which method is best suited to perform this task. As a baseline,
the complete face bounding box is used. We then compare the different algo-
rithms when the skin pixels are either extracted using a mask on the bottom
part of the face (see Figure 6), or using the skin color filter [13]. Performance
using different ROI to extract skin pixels are presented in Table 8.

Table 8: Pearson’s correlation coefficient for different skin color ROI on the test set of the
COHFACE database.

Face bounding box Skin pixels Mask

LiCVPR -0.29 -0.16 -0.44

CHROM 0.30 0.27 0.30

2SR 0.26 0.09 0.65

In this case, the performance of the CHROM algorithm remains stable
and comparable to the one obtained on the studio dataset (see Table 5), no
matter which ROI is considered. This could be explained by the fact that
the mean color is used, which should not vary much across different ROIs.
This also shows that when parameters are tuned using conditions known a
priori, this algorithm is able to cope with variability in illumination. It is
interesting to see that the 2SR algorithm performs better when the mask is
considered. Indeed, one could expect that it would work best when the color
subspace of the considered skin pixels are compact in the RGB space, since it
has been designed this way. This result suggests that with this algorithm the
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ROI has a tremendous influence on the results, as evidenced by the variation
in performance across the different regions. Finally, one should notice that
LiCVPR’s algorithm does not achieve acceptable performance no matter the
ROI. This shows that this algorithm is very sensitive to variations in terms
of both image resolution and illumination conditions.

5. Conclusion

In this contribution, three state-of-the-art rPPG algorithms were selected
and evaluated. For this purpose, a new, publicly available database contain-
ing 40 subjects captured under two different illumination conditions has been
introduced. A thorough experimental evaluation of the selected approaches
has been conducted using different datasets and their associated protocols.
Our reproducible research framework allows assessing performance in a prin-
cipled and unbiased way. Obtained results show that only one rPPG algo-
rithm has a stable behaviour, but overall it has been noticed that performance
is highly dependent on a careful optimization of parameters. Conducted ex-
periments also shows that generalization across conditions (i.e. resolution, il-
lumination) should be of high concern when assessing rPPG approaches. The
data, the experimental protocols and the implementation of the algorithms
used in this study have been made available as open source free software4.
We hope that this will help standardizing the comparison of remote heart
rate measurement algorithms and advance the progress in this field.
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