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Abstract

This work focuses on detecting presentation attacks (PA) mounted
using custom silicone masks. Face recognition (FR) systems have been
shown to be highly vulnerable to PAs based on such masks [1, 2]. Here
we explore the use of multispectral data (color imagery, near infrared
(NIR) imagery and thermal imagery) for face presentation attack detec-
tion (PAD), specifically against the custom silicone mask attacks. Using a
new dataset (XCSMAD) representing 21 custom made masks, we establish
the baseline performance of several commonly used face-PAD methods, on
the different imaging channels. Considering thermal imagery in particu-
lar, our experiments show that low-cost thermal imaging devices are as
effective in face-PAD as more expensive thermal cameras, for mask-based
attacks. This result reinforces the case for the use of thermal data in
face-PAD.

We also demonstrate that fusing information from multiple channels
leads to significant improvement in face-PAD performance. Finally, we
propose a new approach to face-PAD of custom silicone masks using a
convolutional neural network (CNN). On individual spectral channels, the
proposed approach achieves state-of-the-art results. Using multispectral-
fusion, the proposed CNN-based method significantly outperforms the
baseline methods. The new dataset and source-code for our experiments
is freely available for research purposes.

Keywords: Face Presentation Attack Detection (PAD), Biometrics, Custom
Silicone Masks, Multispectral face-PAD, Convolutional Neural Network (CNN),
Deep Learning, CNN Embeddings, Feature Fusion, Score Fusion, XCSMAD

1 Introduction

Presentation attacks (PA), are the most common form of attacks on an FR
system. Various studies [3, 4] have shown that state-of-the-art face recognition
(FR) systems, while achieving near perfect FR performance even in challenging
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scenarios, are highly vulnerable to PAs. Therefore, to have a trustworthy face-
based identity-verification system, it is imperative to pair a FR method with an
appropriate presentation attack detection (PAD) method.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 1: Examples of custom silicone mask-based PAs. (a)–(d) bona fide samples;
(e)–(h) custom-mask attack presentations. The presentations have been captured
against different backgrounds under controlled illumination.

There are two kinds of face-PAs: (1) impersonation and (2) obfuscation. In
an impersonation attack, the identity of a subject (enrolled in a FR system)
is attacked using a PA. An obfuscation attack happens when a user attempts
to deceive the FR system to avoid being recognized. In this work we focus
on impersonation PAs, which fall into three broad categories (depending on the
medium used to mount the PA): (1) print attacks, (2) digital replay attacks, and
(3) 3D mask attacks [5]. In attacks of the first two categories, the instrument
used to perform the attack is inherently two-dimensional (2D). Therefore, such
attacks are collectively called 2D attacks. PAs in the third category are created
using custom masks.

Most face-PAD research so far has been focused on detecting 2D imperson-
ation PAs [6]. Very few studies so far have considered the challenge of detecting
3D-mask PAs. One reason why, is the difficulty of creating realistic custom
masks. Until recently, realistic masks were artisanal products, time-consuming,
and therefore expensive to produce. Recent advances in depth sensing technol-
ogy, and the rise of 3D printers have facilitated the production of rigid custom
masks at a reasonable cost (< USD500). Past face-PAD studies related to
mask-based impersonation attacks [7,8] have considered primarily custom rigid
masks.

In this paper we present the first data-driven analysis of countermeasures
to impersonation PAs constructed using custom silicone masks. Compared to
rigid masks, these flexible masks have a much more realistic appearance (Fig. 1).
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Previous studies have shown that FR systems are highly vulnerable to custom-
silicone-mask based PAs [1, 2]. One underlying reason for this vulnerability is
that these FR systems are designed to operate on visible-light (RGB-color) im-
agery. The use of imagery in various near infrared (NIR) wavelength bands
is particularly effective in detecting various kinds of PAs, including rigid mask
based PAs [3]. In this study, we also explore the use of imagery in other wave-
length bands, specifically in NIR as well as long-wave infrared (LWIR, i.e.,
thermal) bands in detecting custom silicone mask based impersonation PAs.
Good thermal cameras are typically quite expensive (≈ USD 10,000). Recently
low-cost (≈ USD 500) thermal cameras have become available. Compared to
the expensive thermal cameras, the low-cost thermal cameras have relatively
lower image resolution, and lower thermal accuracy and sensitivity, as they lack
adequate sensor-cooling subsystems. In this study, we also investigate whether
low-cost thermal cameras can reliably be used for detecting custom flexible mask
based PAs.

The present study is based on a new dataset of bona fide presentations and
custom silicone mask based PAs. The PAs in this dataset come from 21 masks
corresponding to 17 subjects. (For most subjects only one custom mask has
been created, but multiple custom silicone masks are available for some sub-
jects.) Each presentation has been captured in four imaging channels: color,
NIR, high quality LWIR, and low quality LWIR. The main contributions of this
paper are:
1. A new PAD method for custom silicone mask detection based on a CNN.
Experimental results demonstrate the efficacy of the proposed method over base-
line methods.
2. Using extended-range (ER) imagery (color, NIR, and LWIR), we demonstrate
that fusing information from the different channels leads to a better face-PAD
performance than single-channel approaches.
3. Performance analysis of several well known baseline face-PAD methods in
detecting custom silicone masks. We test these methods on color, NIR, and
LWIR images.
4. A new multispectral dataset, named XCSMAD, for face-PAD studies involv-
ing custom silicone mask attacks1.
5. We also show that data from low-cost thermal cameras can produce face-PAD
performance comparable to data from more expensive thermal cameras. This
result reinforces the case for using thermal images for face-PAD.
6. Vulnerability-analysis of LightCNN based FR method ( [9]) to the custom-
mask based attacks in the new dataset.

The discussion about previous research, presented in Section 2, develops the
context for the present work. Details of mask construction, data acquisition and
protocols for PAD experiments are presented in Section 3. Section 4 discusses
the proposed CNN-based face-PAD method. We describe the experiments and
discuss results in Section 5. A summary of the work, and conclusions drawn
from it, are presented in Section 6.

1Dataset: https://www.idiap.ch/dataset/xcsmad/
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2 Related Work

This work has three major aspects: custom-made 3D mask PAs, ER imagery for
PAD, and PAD using deep networks. In this section we review of the relevant
literature in these three areas. These related works are also summarized in
Table 1.

2.1 3D-Mask PAD

Two broad categories of 3D-masks have been considered in the PAD literature:
rigid masks and flexible masks. Before delving into countermeasures for custom
mask based PAs, the threat posed by such PAs should be quantified. Erdogmus
and Marcel [7] presented the first study demonstrating the vulnerability of FR
systems to PAs made using custom 3D masks. Their study is based on the
3DMAD dataset [7], that has since been widely used to benchmark various
3D-mask PAD methods.

Bhattacharjee et al. [1] have recently shown that several state-of-the-art
CNN-based FR systems are highly vulnerable to custom silicone mask based
impersonation PAs. Previous face-PAD studies involving flexible masks [10,
11] have used generic, not custom-made masks, to address the challenge of
obfuscation PAs. Therefore, these works cannot be directly compared with the
present study.

PAD methods designed for 2D attacks have also been applied to detect 3D-
mask attacks. Erdogmus and colleagues [7, 12] have used local binary pattern
(LBP) histograms [13] to detect mask-based PAs. Liu et al. [8] have also ex-
plored the use of LBP features for detecting PAs in the 3DMAD. On the same
dataset, Lina and Ramavel [14] have achieved lower error rates than [7] by using
binary statistical image features (BSIF). ‘Haralick features’, texture descriptors
derived from co-occurrence matrices, have also been used to detect PAs in the
3DMAD [15]. In the present work, for the first time we will test several such
countermeasures, developed for 2D PAs, on custom silicone-mask based PAs.

One class of 3D-mask PAD algorithms consists of approaches based on
remote photoplethysmography (rPPG): a technique for optically tracking the
cardiac-synchronous changes in blood-flow measured, say, over the facial region
of a subject. The first work to successfully use rPPG for face-PAD was pub-
lished by Li et al. [16]. In [17], rPPG signals from several disjoint facial zones
have been combined to detect mask based PAs. Nowara et al. [18] have also
used rPPG signals from different regions including the background, to determine
whether a presentation is bona fide. As Liu et al. [17] point out, that although
combining rPPG signals from different regions may suppress certain kinds of
noise in the signal, such an approach can also reinforce other kinds of noise,
notably noise due to camera-motion. Heusch and Marcel [19] have shown that
long-term spectral statistics (LTSS) features [20] extracted from rPPG signals
outperform other rPPG-based face-PAD methods [16, 18] on several datasets.
The face-PAD accuracy achieved in their experiments, however, range from 13%
to 25%. These results are far from the state-of-the-art accuracies achieved on
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the respective datasets using other (non-rPPG) approaches.
The attraction of rPPG based face-PAD lies in the fact that only the bona

fide class is modelled. Therefore, such a method can be effective against pre-
viously unseen classes of PAs. The main drawback, however, is that accurate
rPPG signals are notoriously difficult to extract, unless the presentation-videos
are collected under strictly controlled conditions of illumination and subject-
motion.
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Table 1: Summary of recent research activities.

Research
Objective

Ref. Key Tech-
niques/Contributions

Dataset(s)

Vulnerability
Analysis

[7] Vuln. of 3-D custom masks 3DMAD
[3] Vuln. analysis in ER image-

domain
EMSPAD (7 MS
bands)

[1] Vuln. of CNN-based FR
systems to 3D custom sili-
cone masks

CSMAD

3D Mask
Face-PAD

[7] local binary patterns (LBP) 3DMAD
[12] LBP Proprietary
[8] LBP HKBU-MARs
[14] BSIF (binary statistical im-

age features)
3DMAD

[15] Haralick features 3DMAD

ER imaging
Face-PAD

[21] Image fusion, Score fusion
[10] Haralick features, BSIF,

LBP, Local Phase Quanti-
zation (LPQ), Histogram of
Gradients (HoG)

MLFP

Deep
Learning-
based
Face-PAD

[22] Transfer Learning REPLAY-
ATTACK,
CASIA

[23] Fusion (CNN + eye-blink) REPLAY-
ATTACK,
CASIA

[24] Fusion (CNN + multiscale
LBP)

CASIA, NUAA

[25] Autoencoder, Shearlets, op-
tical flow

REPLAY-
ATTACK,
CASIA

[26] LiveNet REPLAY-
ATTACK,
CASIA

[11] Deep dictionary SMAD
[27] Maximum Mean Discrep-

ancy loss function
REPLAY-
ATTACK,
CASIA, MSU

[28] LSTM REPLAY-
ATTACK, CA-
SIA, 3DMAD
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(a) 3D-scan (b) Frontal face mea-
surements (6)

(c) Profile measure-
ments (5)

(d) Right 90◦ (e) Right 45◦ (f) Frontal (g) Left 45◦ (h) Left 90◦

Figure 2: Examples of facial data collected for mask construction. (a) Rendering
of 3D face scan. The red double-headed arrows in (b) and (c) indicate the facial
measurements collected for the purpose of mask construction (six frontal and five
profile measurements are recorded). For each mask-subject (target), the manufacturer
is also provided with photographs of various facial poses (d)–(h).

2.2 Extended-Range Imagery for Face-PAD

PAs are continually improving in quality (resolution, color fidelity, and so on,
for 2D PAs, as well as realism of masks), and the distinction between the two
classes of presentations in VIS imagery is becoming increasingly subtle. Several
recent works have proposed face-PAD methods relying on extended range (ER)
imagery, that is imagery in wavelengths covering the range from visible light
(VIS) to LWIR. Ramachandra et al. [3] have analyzed the vulnerability of FR
systems in seven wavelength bands covering the VIS and NIR portion of the
spectrum where they consider photo-print based attacks. Subsequently [21],
they have also proposed two PAD approaches based on the seven-band multi-
spectral images: image-fusion and score-fusion. Their experiments show that
the score-fusion approach performs better than the image-fusion approach.

Kanzawa et al. [29], working on driver assistance systems for vehicles, showed
that human skin could be reliably detected, even at significant distances, by
combining images captured in three NIR bands– 870nm, 970nm, and 1050nm–
with VIS images. Their key finding was that the reflectance of human skin
dips sharply around 970nm. In the context of biometrics two separate works,
Bourlai [30] and Steiner et al. [31], have proposed multispectral short-wave infra-
red (SWIR) cameras to distinguish human skin from other materials.

Existing studies using ER-imagery for face-PAD have mainly focused on 2D
PAs. The masks present a fundamentally different challenge to FR systems than
2D PAs. Bhattacharjee and Marcel [32] have shown that whereas 2D PAs can
generally be easily detected with NIR imagery using relatively low-cost devices,
such approaches cannot easily detect custom-mask based PAs. The reason is
that the zeroth order and first-order statistics of mask images in both VIS and
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NIR imaging domains are quite similar to those of bona fide presentations. In
thermal images, bona fide presentations produce bright facial images, whereas
masks, being significantly colder than the average body temperature, result in
very dark (low intensity) face images. In other words, in the thermal domain
the two kinds of presentations show significantly different low order statistics.
Therefore, thermal imagery can be used to reliably detect 3D-mask PAs [32]. We
note here that whereas cameras for VIS and NIR imagery are eminently afford-
able, SWIR and LWIR (thermal) cameras are usually very expensive. Relatively
low-cost thermal cameras, such as from Flir One (www.flir.com/flirone)
and Seek Thermal (www.thermal.com) have become available in past decade.
SWIR cameras, however, still remain unaffordable for most applications.

2.3 Face-PAD using Deep Networks

Li et al. [22] first applied transfer-learning to adapt the VGG-Face [33] network,
a benchmark CNN for FR, for 2D PAD. Their results on Replay-Attack dataset
are comparable to those obtained using IQM features [34], but at a much higher
computational cost. Patel et al. [23] fuse the decisions of two classifiers- one
based on frame-based texture features extracted using a CNN, and the other
relying on eye-blink detection, to detect PAs. Their method shows improved
cross-dataset classification results compared to their chosen baseline methods.
More recently, Nguyen et al. [24] have also proposed a similar approach, com-
bining handcrafted (multiscale LBP (MLBP)) features with CNN embeddings
for face-PAD. They show that combining the two kinds of features leads to
better PAD performance than using CNN-embeddings only. Whereas Patel et
al. [23] take a decision-fusion approach, Nguyen et al. have reported results us-
ing feature-fusion and score-fusion to combine the two channels of information.
It is not pertinent to compare the two works, as Patel et al. [23] focus on cross-
dataset performance whereas Nguyen et al. explore the idea of supplementing
CNN-derived features with handcrafted features.

Rehman et al. [26] hypothesize that CNN based face-PAD methods show
poor generalization in cross-dataset scenarios because of the over-learning in-
duced by the use of small training sets. They have trained a CNN (VGG-11)
using continuous randomization, a data-augmentation method, to train the net-
work. Their experiments show that their CNN (’LiveNet’) achieves lower error
rates than previous works in cross-dataset tests.

In search of improved cross-camera generalization, Li et al. [27] have re-
cently proposed the use of Maximum Mean Discrepancy (MMD) [35] as the
loss function for training a 3D-CNN, which extracts both spatial and tempo-
ral characteristics of input videos. They also demonstrate that use of domain
generalization [36] can improve the cross-camera generalization performance of
several previously proposed face-PAD methods.

The works discussed above have applied CNN based methods for detecting
2D PAs. Very few works have included custom-made 3D-mask based attacks
in their studies. Sun et al. [28] have investigated several deep network archi-
tectures, including stacked CNNs as well as CNN+LSTM networks, where the
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output of the CNN is processed by a long short-term memory (LSTM) network,
to model the temporal characteristics of the input. Their experiments show that
most of these architectures can achieve near-perfect PAD performance on the
3DMAD dataset.

Shao et al. [37] have proposed a method for detecting rigid-mask based PAs.
They use a pre-trained VGG network2 to extract several channels of texture-
features from different regions of the face. The texture-features are analyzed,
channel-wise, over the sequence of video-frames, to learn the dynamic modula-
tion of the texture-information in each channel. This analysis is used to char-
acterize micro-motion of facial regions, which is used as a cue to discriminate
between bona fide and 3D-mask presentations. This method outperforms the
chosen baseline methods over two datasets: 3DMAD, and the SUP dataset [8].

3 Data Description

For this study we have used a new dataset named XCSMAD (eXtended Custom
Silicone Mask Attack Dataset). Participants of the study have played three
different roles: (1) target : person for whom custom-masks have been created; (2)
attacker : subject who attacks a target’s identity by wearing a custom-mask of
the target, and (3) bona fide subject : person who makes a bona fide presentation.
The dataset consists of bona fide presentations corresponding to 72 bona fide
subjects, and attack presentations using 21 masks. The data collection process
for our experiments is presented here. We start by describing the custom-masks
used in this study, and the devices used for recording the bona fide and attack
presentations that comprise the XCSMAD.

3.1 Custom-Mask Manufacturing Process

A total of 21 custom-masks have been used in this study. These masks have
been manufactured by Nimba Creations Ltd., a special-effects company, at a
cost of approximately USD 4000 per mask. For each target, the manufacturer
was provided with the following data: (1) 3D-scan of the face collected using
a Realsense SR300 camera, (2) physical measurements of facial features, and
(3) color facial photographs from different points of view (frontal, lateral, and
diagonal views). Figure 2 illustrates the various pieces of data provided to the
manufacturer for each custom-mask.

The manufacturer starts by creating a 3D cast of the target’s head (see
Fig. 3). Such a cast is then used to create the silicone mask. The raw mask,
of the kind shown in Fig. 4(a), undergoes a laborious manual finishing process
where the appropriate skin color as well as other facial texture features (e.g.,
beard, eyebrows, facial make-up and so on) are manually applied to the mask.
Figure 4(c) shows an example of a finished mask.

For each mask, the manufacturer has also provided a bespoke matching
support. Each support is shaped to roughly match the face-shape of the target,

2www.robots.ox.ac.uk/˜vgg/research/very_deep/
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Figure 3: Example of cast made during the custom-mask manufacturing process.

(a) (b) (c)

Figure 4: Different stages in the process of creating a custom silicone mask. (a) Raw
silicone mask; (b) intermediate stage; and (c) finished mask.

and contains holes for eye-sockets. In addition the manufacturer has supplied
us with several sets of synthetic eye-balls with different iris colors, as well as
silicone eye-sockets for mounting the eye-balls in the bespoke supports. We refer
to these masks as half-masks, because each mask corresponds to only the facial
region of the subject, and not the entire head. The inner surface of each mask
is coated with a layer of glue which helps to hold the mask in position when
worn. The masks are manufactured with holes cut-out for the eyes.

3.2 Data Acquisition

The data used in this study has been captured using three cameras, namely (1)
Intel RealSense SR3003, (2) Xenics Gobi-6404, and (3) Seek Thermal Compact

3software.intel.com/en-us/realsense/sr300
4www.xenics.com
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Pro5. Using these devices, presentations are captured in VIS, NIR, and LWIR
wavelength bands. Intel’s RealSense SR300 camera incorporates two sensors,
one for capturing color videos, and another for capturing depth data. It relies
on NIR structured light (nominal wavelength: 860nm [38]) to capture depth
information. The camera produces the most accurate results in the depth range
of 0.2m–1.2m. Therefore, to capture good quality images, the subject should
be positioned quite close (0.2m–0.5m) to the camera. Besides color (RGB)
imagery, the camera also captures NIR videos. It is important to note that
the two cameras (color and NIR) have different fields of view. Color videos of
upto full-HD (1920 × 1080) resolution at a rate of 30 frames per second (fps)
can be obtained using this camera. This camera captures NIR images at VGA
resolution (640 × 480) at 30 fps. The Xenics Gobi-640 thermal camera covers
a wavelength range of 800nm–1200nm (i.e., long-wave infrared (LWIR)), and
captures 16-bit images at VGA resolution at frame-rates up to 50 fps. This
camera costs about USD 10000. With this camera, we have used a 18mm
f/1 lens having a horizontal field of view of 33◦. The Compact Pro thermal
camera also operates in the LWIR range, and collects thermal images at QVGA
resolution at approximately 10 fps. It is designed to work with most mobile
phones, and costs about USD 500. For data collection in this work, the three
cameras have been deployed in a fixed spatial configuration. We rely on the
fixed configuration to determine the mutual spatial calibration of the cameras.
Samples images in the different wavelengths collected using the two cameras
are shown in Fig. 5. Images in the top row of the figure correspond to a bona
fide presentation whereas images in the bottom row correspond to a mask-
attack presentation. For this study, presentations have been captured using the
three cameras simultaneously. The three cameras are mounted in a fixed spatial
configuration. The software for triggering the cameras and recording data from
the cameras during a data capture session synchronizes the frames from different
devices using timestamps associated with the frames. Knowledge of the spatial
configuration of the cameras is used to establish the geometric correspondence
among the channels. This synchronous collection of data in different spectral
bands is key to performing multispectral biometrics, because this is the only way
to make sure that a given presentation is captured in different spectral bands.
Sample images of bona fide presentations are shown in Fig. 5. The images in
Fig. 5(a) and (b) have been captured using the Realsense SR300 camera, and
show the bona fide presentation in visible wavelengths (RGB) and NIR band
respectively. Figures 5(c) and (d) show images captured using the Xenics Gobi
and the Compact Pro thermal cameras, respectively, illustrating the appearance
of a bona fide presentation in the LWIR band.

There is an important reason why we have used two different thermal cam-
eras to capture data for this study. A previous study [32] has already established
that thermal imagery is highly suited for detecting mask-based PAs. That study
used the Xenics Gobi-640 camera, which, while providing imagery of excellent
quality, is too expensive to be practical for widespread use in face-PAD solu-

5www.thermal.com/compact-series.html
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 5: Examples of custom silicone mask-based PAs captured using extended
range imaging. (a)–(d) bona fide samples; (e)–(h) custom-mask attack presentations.
The imaging modalities are, from left to right, VIS, NIR, high-resolution LWIR and
low-resolution LWIR, respectively. Note that the reflectance of the mask is similar to
that of the bona fide presentation in VIS and NIR bands, but significantly different in
LWIR images.

tions. Consumer-grade thermal cameras, such as the Compact Pro, albeit of
much lower quality, are now available at fairly affordable cost. One of the main
goals of our study is to determine whether the face-PAD performance similar
to that obtained using the Xenics Gobi camera can be achieved using recently
available low cost thermal cameras. For this reason we have also captured LWIR
data using the Compact-Pro camera in this study.

3.3 The XCSMAD Dataset

The XCSMAD dataset consists of 240 bona fide and 295 PA videos (each ≈
10 s in duration). Each PA video shows a frontal view of a presentation. Since
the custom-masks have openings for eyes and mouth, in a PA the attacker
can perform actions such as speaking, specific lip movements, and eye-blinking.
Some statistics of the XCSMAD and other datasets for 3D-mask based PAs are
summarized in Table ??.

For each presentation, four channels of video data are captured: VIS, NIR
(860nm), and two LWIR channels, one using the lower quality (and low cost)
Compact Pro thermal camera, and the other using the much more expensive,
Xenics-Gobi thermal camera. The data-capture devices are described in Sec-
tion 3.2.

The four channels are temporally synchronized. We rely on this synchro-
nization for face localization. The MTCNN [39] used for face localization has
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been trained for VIS images. Using the relative positions of the imaging de-
vices, an affine-transform is applied to the face location in a given frame in the
VIS channel to locate the face region in the corresponding frames in the other
spectral-channels.

The experiments reported in this work have been performed using two differ-
ent protocols: the grandtest protocol and the CV (cross-validation) protocol. In
the grandtest protocol (Tab. 3) the dataset is split into three disjoint sets: one
for training (train), one for tuning hyper-parameters, or development (dev),
and one for evaluating the performance of the tuned system (eval). From each
video, 50 frames have been selected through uniform sampling of the video. The
train set consists of 86 bona fide and 95 PA videos. With 50 frames per video,
the train set contains 9050 frames. The dev set contains 4000 frames from
80 bona fide videos and 5750 frames from 115 PA videos, respectively. The
eval set has 7950 frames from 74 bona fide and 85 PA videos. It is important
to note that the three sets are subject-wise disjoint, that is, all data from a
given subject appears only in one of the three sets. Thus, even though for cer-
tain targets we have used multiple custom-masks, no bias is introduced during
classifier-training.

For the CV protocols (Tab. 4), we split the data into five non-overlapping
partitions, each including roughly 20% of the subjects. Using these five parti-
tions, we create five test-protocols (cv0, · · · , cv4), such that in each protocol,
four of the partitions are used for training, and the remaining one is used for
evaluation. The evaluation partition is different in each of the CV protocols.
Similar to the grandtest protocol, here we select 50 frames from each video
sampled uniformly throughout the video.

Table 3: Grandtest protocol for the XCSMAD dataset.

Partition # Videos # Frames Split
ratio (%)

Total
Frames

train-bona fide 86 4300 47.52
9050 (34%)

train-attack 95 4750 52.48

dev-bona fide 80 4000 41.03
9750 (36%)

dev-attack 115 5750 58.97

eval-bona fide 74 3700 46.54
7950 (30%)

eval-attack 85 4250 53.46

Total 535 26750 26750

Table 4: Cross-validation (CV) protocols of XCSMAD dataset.

Protocol # train Videos
[BF, PA]

# eval Videos
[BF, PA]

cv0 409 [182, 227] 126 [58, 68]

cv1 410 [188, 222] 125 [52, 73]

cv2 433 [194, 239] 102 [46, 56]

cv3 454 [202, 252] 081 [38, 43]

cv4 434 [194, 240] 101 [46, 55]
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In the remainder of this paper the label THE-LQ refers to LWIR data from
the Compact Pro camera, and the label THE-HQ refers to LWIR data from the
Xenics Gobi camera.

4 Proposed Approach

Figure 6: Proposed CNN-based Face-PAD framework.

We propose a CNN-based method to detect custom silicone mask-based PAs.
We hypothesize that a CNN pre-trained for face recognition using data from vis-
ible spectra can be an efficient feature extractor for face-PAD without retraining
for transfer learning across different spectral channels. In the context of deep
networks, fine-tuning is a common learning process where a network model orig-
inally trained for a particular task is partially modified or retrained to perform
a similar, but different task. Usually one or more fully connected layers of the
CNN are retrained using the specific input data without modifying the lower
layers. We hypothesize that CNNs can be used as feature extractors for face-
PAD, without explicitly fine-tuning the network for that purpose. We show
that the embeddings extracted from an FR CNN can directly be used to detect
silicone mask-based PAs in ER imagery scenarios. This result is significant not
only because it is counter-intuitive, but also because this can lead to simple
face-PAD solutions. Let us consider a generic deep CNN consisting of multiple
pairs of Convolutional + Pooling layers (Conv + Pool) followed by one or
more fully connected (FC) layers as shown in Fig. 6. The output of pre-final
layer of the CNN represents the embeddings (indicated by layer E in Fig 6).
For an FR CNN, a compact face-representation (or embedding) is generated at
the pre-final layer from the shared-weights across previous layers. We propose
that these embeddings, with the help of an appropriate classifier, can be used
to discriminate the bona fide and attack presentations. In our experiments, we
use a two-class logistic regression (LR) classifier, for its simplicity and efficacy.

To the best of our knowledge, no pre-trained CNN for multi-channel FR or
face-PAD is publicly available. Domain adaptation techniques are often em-
ployed when the input data and the data used to train the CNN are from
different imaging channels or modalities. Typically, transfer learning is used to
retrain the upper layers of a pre-trained CNN (layers closer to the classifier-end
of the CNN) while keeping the initial (lower) layers frozen. Our preliminary
experiments showed that even this form of transfer-learning is not necessary
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Figure 7: Multispectral feature-fusion face-PAD framework.

Figure 8: Multispectral score-fusion face-PAD framework.

to adapt a CNN trained for FR tasks to perform face-PAD using ER imagery.
Many of the experiments reported here have been performed to verify if this is
indeed the case. There are essentially two hypotheses to be validated. First,
whether a CNN trained on a VIS images can generate efficient representation
of the face from different spectra without any explicit processing. Second, can
such a representation be aimed at the detection of presentation attacks—which
is different from the original objective of face recognition. We propose to obtain
the embeddings of the face images from NIR and LWIR channels using the pre-
trained LightCNN. For each spectral band, the embeddings are classified using
a two-class LR classifier, trained specifically for that band.

Another aim of this study is to verify whether fusing information from dif-
ferent spectral bands leads to better face-PAD performance compared to single-
channel (typically VIS) systems. Therefore, we conduct a series of experiments
combining several channels for face-PAD. The complementary information from
different channels can be fused at different processing stages. In particular,
we have used two different frameworks to explore different multi-channel fusion
strategies: feature fusion and score fusion.
Feature fusion: The features for each channel are extracted separately ex-
tracted, and are concatenated in a fixed order to construct a single FV that is
input to the classifier (Fig. 7).
Score fusion: Data from each channel is processed separately, and the various
classifier-scores are combined using a pre-determined formula, to obtain a single
score, that may then be thresholded to generate a decision (Fig. 8).
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5 Experiments and Results

Our experiments to evaluate various countermeasures for custom silicone-mask
based impersonation attacks are described in this section. As described in Sec-
tion 3.3, we have collected a new dataset for the work presented in this paper.
In Section 5.4 we analyze the vulnerability of the LightCNN based FR system to
the custom silicone mask based PAs included in the XCSMAD. This is followed
by discussions of our face-PAD experiments presented in several sections.

This is the first study to test face-PAD methods for custom silicone-mask
based impersonation attacks. In the first set of experiments, therefore, we es-
tablish benchmark performance values of some existing face-PAD approaches
(which were originally devised as VIS imagery based countermeasures for 2D
PAs). The next logical step is to test these benchmark face-PAD methods on ER
imagery. Given that CNN used here operates on single channel input, we em-
ploy feature- and score-fusion strategies to combine multiple imaging-modalities
in a CNN-based face-PAD.

The term experiment here refers to a specific combination of feature ex-
tractor and classifier for face-PAD. We refer to each experiment with a label
composed of the (<feature-type>+ < classifier>). For example, LBP+LR
implies that in the corresponding experiment LBP features were classified using
a LR classifier. We begin with a brief description of the experimental setup and
performance measures. Before discussing the various experiments, we describe
the pre-processing steps used in the various frameworks.

5.1 Overview of Experimental Setup

Figure 9: Framework of a single-channel Face-PAD system.

Figure 9 depicts the framework for a single-channel face-PAD system. The
input is a presentation in the form of an image from a single channel (VIS,
NIR or LWIR). The preprocessing step prepares the input image for feature-
extraction. The feature-extractor generates a lower dimensional representation
of the input, which is fed to the classifier. In all our frameworks, the face-
PAD system functions in one of two phases: training, or evaluation. In the
training phase the classifier is trained using the feature-vectors from the train
set. For every input image the classifier produces a score. The dev set is used
to determine a score-threshold that best separates the two classes (bona fide
presentations, and PAs). Here, we have used the equal-error rate (EER) on the
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dev set to select the score-threshold. The score-threshold τEER from the dev
set is then used to classify every presentation in the eval set based on the score
assigned to the presentation by the classifier. We have used two-class classifiers
in all the experiments reported here– hence the use of labels during the training
process); but a one-class classifier may also be used in this framework.

In this work we have implemented this framework using two-class classifiers.
One-class classifiers may also be used in this framework. Our experiments,
however, showed that one-class classifiers produce significantly worse results
than their two-class equivalents. Therefore, due to space constraints, we have
not discussed one-class classification results in this work.

5.2 Performance Measures

The ISO/IEC 30107-3:2017 standard specified two measures for reporting the
performance of a PAD system: APCER (attack presentation classification error
rate) and BPCER (bona fide presentation classification error rate). APCER is
the proportion of presentation attacks (PA) incorrectly classified as bona fide.
BPCER is the proportion of bona fide presentations incorrectly classified as
PAs. For ease of comparison, we also provide the average classification error
rate (ACER), computed as APCER+BPCER

2 . The vulnerability of a FR system
to PAs is reported as the impostor attack presentation match rate (IAPMR),
defined as the proportion of PAs accepted as genuine presentations.

5.3 Preprocessing

The input image is pre-processed in two ways: (1) face-localization and resizing,
and (2) normalization of radiometric characteristics of the face-region. The pre-
processing steps are implemented differently for the various imaging-modalities.
Face-region normalization: For images from the VIS channel we use the
Multi-task Cascaded Convolutional Networks (MTCNN) [39] to detect the fa-
cial region. Since no pre-trained face-detector is available for NIR and LWIR
images, we use information about the spatial configuration of the various cam-
eras to localize the facial region in these two imaging-modalities via appropriate
affine-transforms for each camera, using the VIS channel as reference. The
cropped facial regions then are resampled to 64 × 64 pixels.
Radiometric normalization: The feature-extraction stage expects an 8-bit
gray-scale image as input. For color images from VIS channel the gray-scale
representation is generated by converting the RGB image to a YCbCr represen-
tation and then simply considering the Y-channel. The NIR and LWIR images
are natively represented as 16-bit gray-scale images. We convert the 16-bit IR
images to 8-bit images by first clipping the pixels to range computed adaptively
based on the median value in the face-region, and subsequently rescaling the
pixel values to the integer-range [0–255].
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Figure 10: Score-distribution histograms for vulnerability analysis of LightCNN based
FR method, using XCSMAD.

5.4 Vulnerability Analysis of LightCNN using XCSMAD

In this section, we describe the vulnerability analysis experiments performed
using the XCSMAD. To assess the threat posed by custom-mask PAs in the
XCSMAD, we create an experimental protocol similar to the one described
in [1]. The bona fide presentations include the videos or high quality photos
of each subject. For each of the 75 subjects, one bona fide presentation is
used for enrolment, and the remaining presentations act as probes. Each PA
video constitutes an attack, and is used as a probe against the corresponding
target-identity. We follow the same preprocessing and feature extraction steps
as used for our face-PAD experiments to obtain a 256-dimensional feature vector
(FV) per sample. The cosine-similarity is used to compute the matching score
between a given probe FV and the enrolment FV of the claimed identity.

The protocol used for the vulnerability analysis experiment produces a total
of 13,986 zero-effort impostor (ZEI) probes and 278 custom-mask presentations.
First, the match scores of the genuine and ZEI probes are used to select a score-
threshold. Here, we have used the a posteriori EER to determine the score-
threshold for the vulnerability analysis. Next, the match-scores of the mask PA
probes are evaluated against this score-threshold to determine the vulnerability
of the CNN-FR system to these custom-mask attacks.

For the given protocol and EER threshold, we obtain an IAPMR of 68.71%
(the 95% confidence interval for the IAPMR being [62.90, 74.11]). Figure 10
shows the score distributions of each type of presentation. The middle his-
togram represents the distribution of the PA scores. Note that a majority of
the PA scores lies above the EER score-threshold between genuine and ZEI
presentation-scores.
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(a) PCA+LDA (b) IQM+LR (c) LBP+LR (d) LBP+SVM

Figure 11: ROC of dev set for various baseline face-PAD methods. On each curve,
the circle indicates corresponding EER-threshold.
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5.5 Single Channel Face-PAD

Table 5: Performance of face-PAD methods using the grandtest protocol for individ-
ual imaging-modalities in XCSMAD. EER values are determined from the dev set,
whereas the APCER, BPCER and ACER values are reported for the eval set using
the score-threshold corresponding to the EER of the dev set. The minimum values of
ACER of eval set obtained for each imaging modality are displayed in bold.

PAD
Method

Imaging
Modal-
ity

EER
%
(dev)

APCER
%
(eval)

BPCER
%
(eval)

ACER
%
(eval)

PCA+LDA

VIS 22.42 14.71 25.30 20.00
NIR 15.62 9.50 11.86 10.68
THE-
LQ

4.60 6.19 1.11 3.65

THE-
HQ

5.03 2.66 4.11 3.38

IQM+LR

VIS 14.99 7.18 20.46 13.82
NIR 12.83 2.73 8.70 5.72
THE-
LQ

3.37 2.85 1.57 2.21

THE-
HQ

0.97 0.00 2.89 1.45

LBP+LR

VIS 14.10 13.60 11.78 12.69
NIR 8.45 0.56 0.92 0.74
THE-
LQ

4.12 4.71 0.76 2.73

THE-
HQ

1.53 0.21 1.08 0.65

LBP+SVM

VIS 11.35 12.05 10.68 11.36
NIR 9.28 0.45 1.27 0.86
THE-
LQ

3.58 4.07 1.92 2.99

THE-
HQ

1.25 0.14 5.30 2.72

CNN+LR
(Pro-
posed)

VIS 1.88 0.00 7.30 3.65
NIR 1.10 1.34 0.59 0.97
THE-
LQ

0.65 0.00 1.05 0.53

THE-
HQ

0.25 0.00 0.00 0.00
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Next, we present four different experiments, each performed on every data-
channel individually. These baseline experiments use open source methods for
face-PAD. Quantitative results of these experiments are shown in Table 5. The
results of each experiment are also presented graphically using receiver operat-
ing characteristics (ROC) curves on the dev sets. Subsequently, we describe
experiments using our proposed approach.

PCA+LDA: This experiment is aimed at understanding whether Principal
Component Analysis (PCA) is able to capture differences in bona fide and PA
images in the various spectral bands used in this work. For each channel, given
n preprocessed bona fide images of size 64×64, a 4096×n matrix is constructed.
Via PCA of this matrix, we retain the subset of m PCs that accounts for 80%
of the variance in the original matrix. This produces a m-dimensional (m-D)
subspace (m � 4096; m is different for each channel.) Thus, a m-D feature-
vector can be derived for each input image (bona fide or PA) by projecting
the preprocessed image on to this subspace. The m-D feature-vectors are then
scored using a linear discriminant analysis (LDA) classifier.

Figure 11a shows the ROC curves for the PCA+LDA experiment on the
dev set. From these plots, we note that data in both LWIR channels produce
significantly better results than VIS and NIR data. Recall that the features
used in this experiment are simply weighted linear combinations of normalized
pixel-values. For VIS data, an ACER of 20.00% (Tab. 5) indicates that the
PCA+LDA method generates the wrong decision for one out of every five im-
ages.
IQM+LR: In this experiment we have used the same 18 IQMs as used by
Costa-Pazo et al. [34]. Here, these measures are computed over the gray-scale
face-region, to generate a 18-D FV for each input image. A LR classifier is
constructed using IQM feature-vectors corresponding to the train set, and the
score-threshold is determined using the dev set.

Figure 11b shows the ROC curves for the dev set for this experiment. The
plots show that on dev set the THE-HQ channel produces near-perfect results
over a large range of APCER. We also note that the THE-LQ data (from the low-
cost, Compact Pro thermal camera) also leads to better face-PAD performance
than NIR and VIS data. It is interesting to note that the low-quality thermal
data outperforms the data from high-quality thermal camera at lower values of
APCER. The relatively poor results on VIS and NIR data reflect the fact that
the appearances of bona fide faces and custom silicone masks are quite similar
in both imaging domains (see Fig. 5). Therefore, IQM features are not highly
discriminative between the two kinds of presentations in VIS and NIR imagery.
From the performance measures reported in Table 5 for this experiment, we
note that the ACER decreases significantly in NIR and LWIR modalities, from
13.82% for the VIS data to 1.45% for THE-HQ data. A perfect APCER of
0% is obtained for THE-HQ data when the IQM are used as discriminatory
features, meaning that the only errors are due to misclassifications of bona fide
presentations.
LBP+LR: Local binary patterns (LBP) and their variants routinely outper-
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form other descriptors in 2D face-PAD experiments [40, 41, 42]. Here we have
computed uniform LBPu2

8,1 codes on normalized face images. The LBP-histogram
forms a 59-D FV representing the input image. A LR classifier is then designed
to score such FVs.

ROC curves (for the dev set) for this experiment are shown in Fig. 11c. From
the EER and ACER values for this experiment, given in Table 5, we note again
that LBP-histograms are far more discriminative in NIR and thermal channels
than for the VIS channel. For the NIR channel, the LBP+LR architecture
produces excellent performance on the eval set (APCER and BPCER are
both smaller than 1%). On dev set, however, the NIR channel produces a
relatively high EER. Similar to the IQM+LR experiment, in the dev set, the
data captured from low-quality thermal camera produces the best results at
lower ranges of APCER. In the eval set, although the THE-HQ data produces
the best results, the results from the THE-LQ data are comparable to those of
the THE-HQ data (relative to the VIS channel data).

The two PAD systems discussed so far, IQM+LR and LBP+LR, use different
features but employ the same classification method. Our results indicate that
two systems produce similar results for VIS channel, in terms of EER and
ACER, and they both produce significantly better results for the NIR and LWIR
data than for the VIS data.
LBP+SVM: Support vector machine (SVM) classifiers have been shown to
yield better results for face-PAD in some previous studies [6, 34]. Therefore,
in this experiment we use a SVM, with radial basis function (RBF) kernel, to
classify the LBP-histogram FVs. From the performance numbers for this ex-
periment (see Table 5), we note that for the dev set the RBF-SVM classifier
performs similarly to the LR classifier used in the LBP+LR experiment, ex-
cept for VIS channel where an improvement in EER of nearly 3% is observed.
Comparing the ROC curves of this experiment (Fig. 11d) with those shown in
Fig. 11c leads us to the same conclusion. The performance numbers for this
experiment (Table 5) also confirm the trend seen in the previous two experi-
ments, namely, that the use of NIR and LWIR data brings at least a three- to
four-fold improvement in detecting custom-mask based PAs, over the use of the
VIS data alone. In this experiment, THE-HQ channel produces a near perfect
face-PAD performance on the dev set across a large range of APCER (see Fig.
11d). Over the eval set, the performance on the THE-HQ channel is worse, as
a BPCER of 5.3% is obtained for the computed τEER score-threshold.

Interestingly, for the NIR-channel, the LBP-based methods produce BPCER
(false rejection) values much smaller than for other baseline methods. Also, for
both LBP-based methods, the NIR channel yields APCER as well as ACER
below 1% on the eval set. In our experiments, however, the LBP-histograms
are less discriminatory in the low-cost LWIR channel (THE-LQ), as indicated
by the relatively high APCER for this channel. Next we propose an approach
to PAD for custom silicone mask attacks based on a CNN.
Proposed Approach (CNN+LR): Here, we utilize the 9-layer LightCNN [9]
as a feature-extractor (Model taken from: github.com/AlfredXiangWu/LightCNN).
LightCNN has been developed for FR tasks in several variants (each variant hav-
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Figure 12: ROC of dev set for the proposed method: CNN+LR

ing a different number of layers), and is one of the most accurate FR methods
today (achieving ≈ 98.8% accuracy [9] on the LFW dataset). In this work we
directly use the 256-D embedding produced by the first fully-connected layer of
LightCNN (termed MFM fc1 by the creators of LightCNN [9]) to characterize
face-regions in the XCSMAD data.

The preprocessing step in this experiment generates 128 × 128 face-cropped
gray-scale images as input to the LightCNN network. It is important to note
that here the LightCNN pre-trained for FR tasks has not been explicitly adapted
for face-PAD. Also, recall that the LightCNN model has been trained using
VIS (RGB color) images [9] only. Here, we consider the embeddings from the
MFM fc1 layer of LightCNN, without nay adaptation of the network to other
wavelength-bands (NIR and LWIR), as the FV for a presentation-image. A
two-class LR classifier is then trained to score the 256-D FVs.

As reported in Table 5, the proposed method produces a perfect APCER of
0.00% for the three channels- VIS, THE-LQ, and THE-HQ. In other words, for
these channels, no PA in the eval set is incorrectly classified as bona fide. In
terms of ACER, for the VIS channel the proposed CNN+LR method outper-
forms, by a factor of three to four, all the baseline methods previously discussed
in this study. Similarly for NIR images in the eval set, this method pro-
duces lower BPCER (0.6%) than the baseline methods. The ACER of 0.53%
for THE-LQ images is the lowest error rate observed for this channel among all
experiments. For the THE-HQ channel, the proposed CNN+LR method pro-
duces perfect results. One noteworthy observation from this experiment is the
performance of this method on the dev set. For each imaging channel, the best
values of EER are obtained for the proposed method. From the ROC plots over
the dev set (Fig. 12), we also note that the proposed method produces excellent
results for APCER values below 0.01%, regardless the imaging channel.

Finally, we briefly discuss results of proposed approach using the CV proto-
cols described in Table 4. Since these protocols do not explicitly include dev
sets, we report the a posteriori EER values of each of the 5 protocols along with
their average. The results are summarized in Table 6. Comparing these results
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Table 6: Performance evaluation of the proposed approach on XCSMAD dataset using
cross-validation (CV) protocol.

Imaging
Modal-
ity

EER
cv0

EER
cv1

EER
cv2

EER
cv3

EER
cv4

EER
avg

VIS 1.38 0.66 1.00 0.32 0.87 0.85

NIR 0.11 0.08 0.39 0.57 0.26 0.28

THE-
LQ

0.35 0.05 1.74 0.00 0.00 0.43

THE-
HQ

0.00 0.08 0.00 0.00 0.00 0.02

with those for the CNN+LR experiment on the grandtest protocol (bottom of
the EER column in Table 5), we note that the error-rates in the CV protocols
are lower than in the grandtest protocol, for all four data-channels. The im-
proved performances in the CV protocols reflect the fact that in these protocols
the size of training data for the LR classifier is significantly larger than the size
of the train set in the grandtest protocol.

Table 6 shows the results of the proposed CNN+LR method using the CV
protocols specified in Section 3.3. We note that, for each imaging channel, the
CV results are quite similar to those obtained using the grandtest protocol.
(Similar CV experiments were also performed for the four baseline methods.
Again, the results with the various CV partitions were similar to those listed in
Table 5. Due to space constraints, we have not included details of the CV results
here. The source-code for all our experiments, including the CV experiments,
is publicly available. We invite the reader to verify the CV results using the
published code.)

Figure 13 shows some of the presentations classified incorrectly by the pro-
posed method. The two left columns show examples of misclassified bona fide
samples, whereas the two right columns show examples of successful PAs, in
different imaging modalities. When using CNN embeddings, it is not possible
to pinpoint the reason for a misclassification. There does not seem to be any
obvious reason for false-rejections in neither the VIS images (Fig. 13 (a), (b)),
nor the NIR images (Fig. 13 (e), (f)). For the false-accepts, shown in the two
rightmost columns, we note that the images shown here do present realistic
facial features, both in NIR and in THE-LQ.

5.6 Fusion Experiments

The next logical step is to explore multispectral fusion strategies for face-PAD.
In this section we present results of several pair-wise multispectral fusion exper-
iments. The single-channel experiments (Section 5.5) showed that the THE-HQ
data, captured using a high quality but expensive Xenics Gobi thermal camera is
not indispensable for reliable detection of custom-silicone mask based PAs. Data
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Figure 13: Examples of presentations misclassified by the proposed approach. (a) &
(b): misclassified bona fide from VIS channel. (c) & (d): misclassified bona fide from
THE-LQ channel. (e) & (f): misclassified bona fide samples from NIR channel. (g) &
(h) misclassified PAs from NIR channels. All images are preprocessed face regions.

from low-cost thermal cameras– Seek Thermal’s Compact Pro, in our case– can
be used to achieve a comparable performance (difference in error rates is often
within 1%). Therefore, in the set of multispectral fusion experiments discussed
in this section, we have not included the THE-HQ data.

Both fusion strategies– feature fusion and score fusion– have been tested on
different combinations of spectral channels. Performance-metrics for the fusion
experiments are listed in Table 7. For each set of experiments, we also present
the corresponding ROC curves in the discussion below.
Feature Fusion: Given the embeddings of two normalized face-images (outputs
of the preprocessing stage) of the same presentation from different channels,
these FVs of the two images are stacked to obtain a single concatenated FV of
length k = k1 + k2, where k1 and k2 are the lengths of feature vectors of first
and second images, respectively. In our case, both FVs are of the same length
since we employ the same CNN as feature extractor. A two-class LR classifier
is designed to score these k-D FVs. We have considered the following three
spectral combinations: VIS + NIR, VIS + THE-LQ and NIR + THE-LQ. A
bespoke LR classifier is trained for each spectral-pair.

Figure 14a shows the ROC plots of dev set for feature-fusion experiments.
Quantitative performance measures are reported in Table 7. In the VIS+NIR
feature fusion experiment the EER and ACER obtained by combining data from
the two channels are better than the corresponding single-channel CNN+LR
experiment results (compare with Table 5). Note that this fusion retains the
perfect APCER observed in the single-channel experiment using VIS data.

When data from VIS and THE-LQ channels are fused, an ACER of 2.63%
is obtained on the eval set, which is lower than the ACER values achieved by
the proposed CNN+LR method for single-channel experiments of VIS images.
However, the THE-LQ channel produced a better BPCER when used separately
than fusing with VIS channel in this experiment.

25



(a) Feature fusion (b) Score fusion

Figure 14: ROC of dev set for the proposed multi-channel fusion face-PAD methods.

Table 7: Performance Evaluation of Fusion face-PAD experiments on XCSMAD
dataset. The values reported are percentages. The minimum values of ACER of
eval set obtained for each pair of imaging-modalities are displayed in bold.

Fusion
Method

Channels EER
(dev)

APCER
(eval)

BPCER
(eval)

ACER
(eval)

Feature
fu-
sion

VIS + NIR 0.87 0.00 1.40 0.70

VIS + THE-
LQ

0.87 0.00 5.27 2.63

NIR +
THE-LQ

0.63 0.00 0.62 0.31

Score
fu-
sion

VIS + NIR 0.87 0.00 2.43 1.22

VIS + THE-
LQ

0.87 0.00 2.11 1.05

NIR +
THE-LQ

0.87 0.00 0.40 0.20

In general, we can conclude that combining the VIS channel with other
wavelength bands (NIR or LWIR) leads to a higher detection accuracy (than
when only VIS data is used), for custom-silicone mask PAs. This makes a
strong case for using ER imagery for face-PAD. Combining the NIR and THE-
LQ images, we observe an improvement of nearly 40% in ACER compared to
the corresponding single-channel results using CNN+LR method. The perfect
APCER of 0% is achieved in all feature-fusion experiments while lowering the
average error rates (ACER). These experiments show that feature-fusion can be
effective in improving PAD accuracy for custom-silicone masks when multiple
imaging channels are available.
Score Fusion: The framework for our proposed score fusion scheme is depicted
in Fig. 8. For score based fusion of multispectral data, a separate face-PAD
system is implemented for each spectral channel. Given a presentation, the n
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scores thus obtained, for n imaging channels, are then combined using an a
priori fusion scheme. The fusion scheme may be rule-based, such as taking the
minimum or maximum of the available scores, or may be derived algorithmically,
by training a classifier in a data-driven fashion. The final fused score may then
be thresholded appropriately, to arrive at a decision. Here we train a two-class
LR classifier to combine the three single-channel LightCNN scores into a single
fused score. The LR classifier is trained on the scores computed over the train
set, and the EER score-threshold, τEER, is determined using the dev set. The
ROC curves for this experiment are plotted in Fig. 14b. In these plots, ROC
curves for three channel-fusion experiments are shown, namely, VIS + NIR,
VIS + THE-LQ, and NIR + THE-LQ. For all three experiments, score-fusion
leads to a APCER of 0.0%, as observed in the results of proposed CNN+LR
method for individual VIS and THE-LQ channels. It is also worth noting that
a consistent value of EER is obtained on the dev set for all three fusion pairs.
For score-fusion of VIS and NIR channels, this EER value (0.87%) is lower than
the EER obtained using the single channel CNN+LR method. Note that the
ROC plots of the CNN+LR fusion scheme are practically the same for VIS
+ NIR, VIS + THE-LQ, and NIR + THE-LQ channel combinations in the
dev set for APCER below 0.01%. Consider the fusion of NIR + THE-LQ
channels: The performance metrics presented in Table 7 indicates that ACER
for combination is less than 0.3% compared to individual channel experiments.
In the proposed CNN+LR method, the NIR channel resulted in a APCER of
1.34%, while THE-LQ channel produced a perfect APCER. On the other hand,
NIR channel produced nearly half value of BPCER as compared to the THE-LQ
channel. Our experiments show that the score-fusion of these channels lowers
the BPCER by nearly 30% of the BPCER of individual NIR channel, while
maintaining the APCER at 0%.

The single-channel experiments (Sec. 5.5), confirm findings in previous works
( [32]) that the LWIR modality (both THE-LQ and THE-HQ data) produces
the best PAD results for 3D custom silicone masks. Analyzing the results of the
spectral fusion experiments, we note that the inclusion of thermal data, for both
scenarios—feature fusion and score fusion leads to better face-PAD performance
for the class of PAs considered in this study.

6 Conclusion

We present the first data-driven study on detecting PAs mounted using custom-
made silicone masks6. For this study, Nimba Creations Ltd., a special-effects
company, has constructed very realistic silicone masks for 17 target-subjects,
based on pictures and 3D scans provided by us. State of the art CNN-FR
systems have been shown to be highly vulnerable to PAs made using such masks
[1, 2]. In this work we present a new method for detecting impersonation PAs
made using custom silicone masks. The proposed method uses a CNN to extract

6Python code for all experiments mentioned in this work is available at: https://gitlab.
idiap.ch/bob/bob.paper.xcsmad_facepad
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a feature-vector (FV) for every input image. The FV is then classified using a
logistic-regression (LR) classifier. We compare the performance of the proposed
CNN+LR method with several commonly used baseline face-PAD techniques.
These baseline methods have been developed mainly for 2D PAs such as print-
attacks or replay-attacks. Here we have explored the efficacy of these techniques
for the specific case of custom 3D silicone masks.

Another significant aspect of this study has been the use of extended-range
(ER) imagery for detecting custom silicone-mask based PAs. Specifically, we
have used data captured in several spectral wavelength-bands: visible-light
(VIS), near-infrared (NIR) and thermal (or, long-wave infrared (LWIR)). Our
experiments show that the baseline methods, which have been developed with
VIS imagery in mind, produce better results in the NIR and LWIR domains.
Other research works have previously demonstrated that imagery in longer wave-
lengths (specifically SWIR and LWIR) are highly suited for constructing coun-
termeasures for mask based attacks. These earlier studies, however, relied on
very expensive imaging systems, typically costing more than USD 10,000. One
goal of this study has been to explore whether a new crop of low-cost consumer-
grade thermal cameras may be applicable in this context. Our single-channel
experiments show that data from a low-cost thermal camera, such as the Com-
pact Pro from Seek Thermal, can lead to PAD performance comparable to that
obtained using the Xenics Gobi thermal camera, which is 20 times more expen-
sive.

The proposed custom silicone mask PAD method used embeddings extracted
from a 9-layer LightCNN [9] as FVs. It is important to note that the LightCNN
has been trained for FR tasks, only on VIS images. It is one of the best per-
forming FR methods available today. Our experiments lead to a very counter-
intuitive observation that some features that perform exceedingly well for FR,
can also lead to near-perfect performance for custom silicone mask PAD. Our
single-channel experiments show that the CNN+LR method performs better
than the baseline methods for every imaging channel. For VIS and two thermal
channels, the proposed method results in the perfect APCER of 0.0%. The spec-
tral fusion experiments with the proposed CNN+LR method show that both
feature-fusion and score-fusion approaches outperform all other methods dis-
cussed in this work, consistently producing extremely low BPCER values while
maintaining zero APCER. This is the first work to demonstrate that not only
can the embeddings from LightCNN (trained for FR tasks using VIS images)
be used for face-PAD applications using VIS data, but the same embeddings,
without explicit domain adaptation, also lead to very high accuracy face-PAD
approaches in other imaging-modalities, specifically in NIR and LWIR spectral
bands.

In future work we will examine ways of fusing ER-imagery based PAD for
custom-masks with face-PAD approaches for other classes of PAs to devise a uni-
fied face-PAD strategy. We will explore approaches for combining such a unified
PAD system with FR systems, to construct a trustworthy face-authentication
system.
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